Главная > Методы корреляционного и регрессионного анализа
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.8. ПРОВЕРКА ЛИНЕЙНОСТИ РЕГРЕССИИ

В экономике причинно-следственные отношения между явлениями часто описываются с помощью линейных или линеаризуемых зависимостей. Разработаны статистические критерии, позволяющие либо подтвердить факт непротиворечивости линейной формы зависимости

опытным данным, либо отвергнуть предложенный вид зависимости как не соответствующий этим данным. Для проверки линейности регрессии применяется следующий метод. Пусть каждому значению объясняющей переменной соответствует несколько значений зависимой переменной, по которым вычисляют частные средние и т.д. Обозначим через частное среднее, соответствующее значению объясняющей переменной:

где — число значений у, относящихся к

Найдем теперь средний квадрат отклонений значений от их частных средних:

Показатель (8.72) является мерой рассеяния опытных данных около своих частных средних, т. е. мерой, не зависящей от выбранного вида регрессии. В качестве меры рассеяния опытных данных вокруг эмпирической регрессионной прямой выбирается средний квадрат отклонений:

Оба показателя представляют собой независимые статистические оценки одной и той же дисперсии в у. Если несущественно больше то в качестве гипотетической зависимости может быть принята линейная.

Если в генеральной совокупности существует линейная регрессия и условные распределения переменной у хотя бы приблизительно нормальны, то отношение средних квадратов отклонений (8.72) и (8.73)

имеет -распределение степенями свободы. Значение подсчитанное по формуле (8.74), сравнивается с критическим найденным по табл. 4 приложения при заданном уровне значимости а и степенях свободы. Если то разница между обоими средними квадратами отклонений статистически незначима и выбранная нами линейная регрессионная зависимость может быть принята как правдоподобная, не противоречащая опытным данным. Если а, то различие между обоими средними квадратами отклонений существенно, неслучайно, и гипотеза о линейной зависимости между переменными несостоятельна. Разработаны также другие критерии проверки гипотезы о линейности регрессии. Заинтересованный читатель может найти их в соответствующей литературе [122], [76].

1
Оглавление
email@scask.ru