Главная > Методы корреляционного и регрессионного анализа
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.3. ПРОСТАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ

Мы познакомились с двумя простыми приемами предварительного анализа зависимости между двумя переменными — диаграммой рассеяния и методом частных средних. Теперь перейдем к описанию простой линейной регрессии и выясним смысл отдельных составляющих функции регрессии.

Под простой регрессией мы понимаем одностороннюю стохастическую зависимость результативной переменной только от одной объясняющей переменной:

Если исходя из соображений профессионально-теоретического характера в сочетании с исследованием расположения точек на диаграмме рассеяния предполагается линейный характер зависимости усредненных значений результативной переменной, то эту зависимость выражают с помощью функции линейной регрессии. Формула (2.8) принимает в этом случае вид

Это общее уравнение для простой линейной регрессии, где -объясняющая переменная. Имеется наблюдений над этой переменной Неизвестные параметры регрессии подлежат оценке по определенной процедуре. Далее, не вводя дополнительных обозначений, мы будем называть их оценками параметров.

— постоянная регрессии. Ее можно представить в виде коэффициента при фиктивной переменной, принимающей для всех значение . Постоянная определяет точку пересечения прямой регрессии с осью ординат (рис. 11). Так как в соответствии с общим истолкованием уравнения регрессии является средним значением у в точке то отсюда видно, что экономическая интерпретация часто очень затруднительна или вообще невозможна. Например, если на основе опытных данных получено уравнение регрессии

определяющее зависимость объема производства от основных фондов (размерность обеих величин в 1000 марок), то интерпретация приведет к парадоксальному результату. А именно, при неиспользовании основных фондов объем производства составит марок. Теоретически должно быть в этом случае равным нулю или больше него. Но практически информация, содержащаяся в опытных данных, недостаточна, чтобы предотвратить такой парадоксальный вывод. Постоянная выполняет в уравнении регрессий функцию выравнивания. При этом следует подчеркнуть, что благодаря постоянной функция регрессии неошибочна. Уравнение регрессии интерпретируемо только в области скопления точек, а следовательно,

тельно, только между наименьшим и наибольшим наблюдаемыми значениями переменной х. Для большинства практических исследований величинами, представляющими интерес, являются и у, а не

Коэффициент называют коэффициентом регрессии. Он характеризует наклон прямой к оси Если через у обозначить угол, который прямая регрессии образует с осью абсцисс, то (см. рис. И). Коэффициент регрессии является мерой зависимости переменной у от переменной х или мерой влияния, оказываемого изменением переменной х на переменную у. Согласно уравнению указывает среднюю величину изменения переменной у при изменении объясняющей переменной х на одну единицу. Знак определяет направление этого изменения. При положительном коэффициенте регрессии мы располагаем положительной линейной регрессией, означающей поступательный характер изменения зависимой переменной при увеличении значений объясняющей переменной х. При отрицательном коэффициенте регрессии речь идет об отрицательной регрессии, при которой с увеличением значений х значения переменной у убывают. Параметры регрессии — не безразмерные величины. Постоянная уравнения регрессии имеет размерность переменной у. Размерность коэффициента регрессии представляет собой отношение размерности зависимой переменной к размерности объясняющей переменной. Здесь же отметим общий принцип, которого будем далее придерживаться. Функции, с помощью которых описывается зависимость между исследуемыми переменными, должны быть линейными относительно оцениваемых параметров. После получения численных оценок параметров может быть вычислено по уравнению регрессии для каждого значения независимой переменной значение

Рис. 11. Регрессионная прямая и ее параметры

Значения функции регрессии называются предсказанными или расчетными значениями переменной у для фиксированных х. При линейной функции совокупность предсказанных значений образует прямую регрессии. Как уже упоминалось, из-за искажающего влияния посторонних факторов-причин для каждого значения может наблюдаться несколько эмпирических значений т. е. каждому значению соответствует в статистическом смысле распределение вероятностей значений переменной у. Значения функции регрессии

являются таким образом оценками средних значений переменной у для каждого фиксированного значения переменной х.

Отсюда становится очевидной экономическая интерпретация

Значения регрессии указывают среднее значение зависимой переменной у при заданном объясняющей переменной х в предположении, что единственной причиной изменения переменной у является переменная а случайная возмущающая переменная и приняла значение, равное нулю. Разброс наблюдаемых значений переменной у вокруг обусловлен влиянием множества не поддающихся строгому учету и контролю причин. Разность между эмпирическим значением четным значением называемая также остатком, дает численную оценку значения возмущающей переменной и (см. рис. 11).

Таким образом, мы подошли к проблеме оценивания неизвестных параметров регрессии Различным значениям будут соответствовать различные линии. Из бесчисленного множества прямых, которые можно провести на плоскости, следует выбрать одну, наилучшим образом соответствующую опытным данным. Существует процедура расчета оценок параметров, основанная на некоторых предположениях. Изложением этой процедуры мы и займемся.

1
Оглавление
email@scask.ru