Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 3. Эквивалентность и эквивалентные преобразования систем скользящих векторовДля того чтобы наиболее удобным образом ввести понятие об эквивалентности двух множеств векторов и построить затем систему правил, позволяющих упрощать эти множества, определять, эквивалентны ли они, и т. д., введем предварительно понятие о векторном нуле. Векторным нулем называется множество векторов, состоящее из двух векторов, равных по величине, действующих вдоль одной и той же прямой и направленных в противоположные стороны. Множество систем векторов называется множеством систем скользящих векторов, а каждая система векторов из этого множества — системой скользящих векторов в том случае, когда, опираясь на физические соображения, можно ввести следующее соотношение эквивалентности: две системы из множества эквивалентны, если любая из них переходит в другую путем добавления или отбрасывания векторных нулей. Задача о том, можно или нельзя в каждом конкретном случае ввести такое соотношение эквивалентности для систем векторов, не может быть решена формально, исходя из свойств этих систем векторов как математических объектов. Установление соотношения эквивалентности — новое аксиоматическое предположение, а вопрос о законности любого предположения такого рода каждый раз решается, исходя из физической сущности объектов, математической моделью которых являются рассматриваемые системы векторов. Например, интуитивно ясно, что при изучении движения (а не внутреннего состояния) твердого тела к совокупности сил, действующих на это тело, можно добавлять (или от нее можно отбрасывать) две силы, равные по величине и действующие вдоль одной и той же прямой в противоположные стороны. Поэтому множество векторов, изображающих систему сил, действующих на твердое тело, образует систему скользящих векторов. Легко видеть, однако, что совокупность сил взаимного притяжения, приложенных к двум разным телам, не составляет системы скользящих векторов, так как хотя силы взаимного притяжения всегда образуют векторный нуль, их отбросить нельзя, поскольку движение тел зависит, в частности, и от этих сил. Название «система скользящих векторов» принято потому, что только с помощью добавления или отбрасывания векторных нулей можно персменипь любой вектор системы вдоль линии его действия. Чтобы показать это, рассмотрим, например, множество из трех векторов (рис.
Рис. П.11. Векторы 1 и 1" также образуют векторный нуль — отбросим его. В результате получается система, показанная на рис. П.11, в. По определению она эквивалентна исходной, так как мы только добавляли и отбрасывали векторные нули, но теперь уже вектор 1 перемещен в точку О вдоль линии действия. Разумеется, так же можно было переместить любой иной вектор системы. До сих пор мы рассматривали вектор как направленный отрезок, характеризуемый величиной, направлением и точкой приложения. Для системы скользящих векторов понятие точки приложения оказывается излишним. Благодаря постулируемому правилу, разрешающему добавлять и отбрасывать векторные нули, векторы систем как бы освобождаются от точек приложения, наделяются возможностью «скользить» вдоль линии действия. Система скользящих векторов называется пучком векторов (или просто пучком), если линии действия всех векторов системы пересекаются в одной точке (рис. П.12, а). Воспользовавшись тем, что только за счет добавления или отбрасывания векторных нулей всегда можно перемещать скользящий вектор по линии действия (см. выше), переместим все векторы пучка в точку О пересечения их линий действия (рис. П.12, б).
Рис. П.12. Теперь можно действовать с векторами, образующими пучок, как с обычными векторами, можно сложить их попарно по правилу параллелограмма и заменить одним вектором Ф — их суммой. Естественно считать, что Ф также является системой скользящих векторов, состоящей из одного вектора, и что эта система эквивалентна исходной. Преобразования, связанные с добавлением или отбрасыванием векторных нулей и с заменой пучка векторов одним вектором, назовем элементарными преобразованиями. Оба элементарных преобразования обратимы. Для добавления нулей это следует из определения — нули можно добавлять и отбрасывать. Для замены пучка суммой это следует из того, что для разложения вектора по заданным направлениям достаточно операции добавления и отбрасывания векторных нулей. По определению элементарные преобразования переводят систему скользящих векторов в другую, эквивалентную ей, систему. Поэтому две системы заведомо эквивалентны, если они переводятся одна в другую последовательностью любого числа элементарных преобразований. Эквивалентность системы скользящих векторов
или короче
Теорема 5. Элементарные преобразования не меняют ни главного вектора, ни главного момента системы скользящих векторов. Доказательство. Для первого элементарного преобразования — добавления пли отбрасывания векторного нуля — утверждение теоремы 5 очевидно: при образовании главного вектора два образующих нуль вектора взаимно уничтожаются. При образовании же главного момента главный момент двух векторов, образующих нуль, равен нулю.
Рис. П.13. Действительно, если полюс О лежит на линии их действия (рис. П. 13, а), нулю равен момент каждого из этих векторов порознь; если же полюс О не лежит на линии их действия (рис. Столь же тривиально утверждение теоремы 5 в отношении главного вектора при втором элементарном преобразовании — замене пучка его суммой Ф. По определению, если векторы
причем не только линии действия всех векторов
где
где в качестве
Рис. П.14. Подставляя теперь в (6) выражение для Ф, получаем
Итак, для пучка скользящих векторов момент главного вектора равен главному моменту пучка. Это утверждение, иногда выделяют в отдельную теорему — так называемую теорему Баритона.
|
1 |
Оглавление
|