Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.2.1. Принцип подкрепления — наказанияОбучающий алгоритм для перцептрона, приведенного на рис. 5.1, сводится к простой схеме итеративного определения вектора весов Заданы два обучающих множества, представляющие классы Если
где Если
В противном случае
Короче говоря, алгоритм вносит изменения в вектор весов Очевидно, что алгоритм перцептрона является процедурой типа «подкрепление — наказание», причем, надо признаться, подкреплением за правильную классификацию образа, в сущности, служит отсутствие наказания. Иными словами, если образ классифицирован правильно, то система подкрепляется тем, что в вектор весов Сходимость алгоритма наступает при правильной классификации всех образов с помощью некоторого вектора весов. В следующем разделе показано, что алгоритм перцептрона сходится за конечное число итераций, если заданные классы линейно разделимы. Прежде чем приступить к доказательству, будет полезно подробно рассмотреть простой численный пример. Пример. Рассмотрим образы, представленные на рис. 5.2, а. Следует применить к этим образам алгоритм перцептрона с тем, чтобы с его помощью определить весовой вектор решения.
Рис. 5.2. Иллюстрация принципа действия алгоритма перцептронного типа. а — образы, принадлежащие двум классам; б — разделяющая граница, полученная с помощью реализации процесса обучения. Осмотр образов показывает, что два заданных класса линейно разделимы и, следовательно, применение алгоритма окажется успешным. До начала применения алгоритма пополним все образы. При этом рассматриваемые классы обратятся в предъявив образы в указанном выше порядке, получим (по шагам): (см. скан) Коррекция вектора весов проводилась на первом и третьем шагах в соответствии с формулами (5.2.2) и (5.2.3) в связи с ошибками классификации. Так как получаемый результат можно считать искомым решением только в том случае, когда алгоритм осуществит без ошибок полный цикл итерации по всем образам, обучающее множество следует предъявить еще раз. Процесс обучения системы продолжается при (кликните для просмотра скана) Нетрудно убедиться в том, что в следующем итеративном цикле все образы классифицируются правильно. Итак, вектор решения имеет вид В соответствии с анализом, проведенным в § 5.1, алгоритм перцептрона можно представить в другой, эквивалентной форме, умножив пополненные образы одного из классов на —1. Таким образом, умножив все образы, например класса
где с — положительное корректирующее приращение. В данной главе будем пользоваться именно этим эквивалентным представлением алгоритма перцептрона.
|
1 |
Оглавление
|