Главная > Нейроуправление и его приложения
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

5. ПРИЛОЖЕНИЯ НЕЙРОННОГО УПРАВЛЕНИЯ

5.1. Введение

В этой главе представлены некоторые методы нейронного управления и примеры их практического применения для реальных систем. В качестве таковых здесь рассматриваются: система управления температурой водяной ванны, инвертированный маятник, система управления генератором в электрическом транспортном средстве, печь как многомерный объект управления (со многими входами и выходами). Для системы управления температурой водяной ванны и печи применяется схема нейронного управления с эмулятором и контроллером. Так как эти реальные процессы по своей природе являются медленными, для обучения нейронных сетей сначала применяются методы автономного обучения, а затем для точной настройки характеристик этих сетей применяется оперативное обучение (в соответствии со схемой, показанной на рис. 4.2.5). Для рассматриваемых примеров приводится сравнение предложенных методов с некоторыми традиционными подходами к управлению процессами различной сложности. Так как нейронное управление представляет собой относительно новый подход, сравнение его с традиционными подходами представляет особый интерес.

Для инвертированного маятника в качестве первоначального подхода к управлению используется нечеткая логика с минимальным набором правил. Этот вид управления можно рассматривать как грубое управляющее воздействие, так как нечеткая логика применяется достаточно просто. Однако выбор набора правил и коэффициентов для точной настройки нечеткого контроллера является достаточно сложной задачей. Для ее решения применяется стратегия линейного

оптимального управления, обеспечивающего стабилизацию маятника в вертикальном положении. Наконец, для точной настройки обоих контроллеров с учетом нелинейных характеристик и неучтенных особенностей динамики системы применяются нейронные сети.

Другой пример — разработка ПИД-нейроконтроллера с самонастройкой для генераторной системы электротранспортного средства. Нейронная сеть здесь используется для оперативной настройки коэффициентов ПИД-контроллера. Эксперименты показывают, что такое применение нейронной сети позволяет уменьшить результирующую ошибку.

1
Оглавление
email@scask.ru