Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 31. Мультиплетность спектров и спин электронаИсследование спектров щелочных металлов при помощи приборов с большой разрешающей силой показало, что каждая линия этих спектров является двойной (дублет). Так, например, характерная для натрия желтая линия Структура спектра, отражающая расщепление линий на компоненты, называется тонкой структурой. Сложные линии, состоящие из нескольких компонент, получили название мультиплетов. Тонкая структура обнаруживается, кроме щелочных металлов, также и у других элементов, причем число компонент в мультиплете может быть равно двум (дублеты), трем (триплеты), четырем (квартеты), пяти (квинтеты) и т. д. В частном случае спектральные линии даже с учетом тонкой структуры могут быть одиночными (синглеты). Расщепление спектральных линий, очевидно, обусловлено расщеплением энергетических уровней. Для объяснения расщепления уровней Гаудсмит и Уленбек выдвинули в 1925 г. гипотезу о том, что электрон обладает собственным моментом импульса Этот собственный момент был назван спином. Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Согласно этим представлениям электрон уподоблялся волчку или веретену. Кстати, отсюда происходит и сам термин «спин»: по-английски spin означает «верчение». Однако очень скоро пришлось отказаться от подобных модельных представлений, в частности по следующей причине. Вращающийся заряженный шарик должен обладать магнитным моментом, причем отношение магнитного момента к механическому должно иметь значение
(см. формулу (56.3) 2-го тома). Действительно, было установлено, что электрон, наряду с собственным механическим моментом, обладает также и собственным магнитным моментом Однако ряд опытных фактов, в частности сложный эффект Зеемана, свидетельствует о том, что отношение собственных магнитного и механического моментов в два раза больше, чем для орбитальных моментов:
Таким образом, представление об электроне как о вращающемся шарике оказалось несостоятельным. Спин следует считать внутренним свойством, присущим электрону, подобно тому как ему присущи заряд и масса. Предположение о спине электрона было подтверждено большим количеством опытных фактов и должно считаться совершенно доказанным. Оказалось также, что наличие спина и все его свойства автоматически вытекают из установленного Дираком уравнения квантовой механики, удовлетворяющего требованиям теории относительности. Таким образом, выяснилось, что спин электрона является свойством одновременно квантовым и релятивистским. Спином обладают также протоны, нейтроны, фотоны и другие элементарные частицы (кроме мезонов). Величина собственного момента импульса электрона определяется по общим законам квантовой механики (см. формулу (24.2)) так называемым спиновым квантовым числом s, равным
Чтобы найти значение собственного магнитного момента электрона, умножим
( Проекция собственного магнитного момента электрона на заданное направление может иметь следующие значения:
(минус получается, если Таким образом, проекция собственного момента импульса электрона может принимать значения Рассмотрим теперь на примере атома натрия, как существование спина электрона может объяснить мультиплетную структуру спектра. Поскольку момент атомного остатка равен нулю, момент атома натрия равен моменту валентного электрона. Момент же электрона будет слагаться из двух моментов: орбитального
причем
где I и s — соответственно азимутальное и спиновое квантовые числа. При Теперь учтем, что с механическими моментами связаны магнитные моменты, которые взаимодействуют друг с другом подобно тому, как взаимодействуют два тока или две магнитные стрелки. Энергия этого взаимодействия (называемого спин-орбитальным взаимодействием) зависит от взаимной ориентации орбитального и собственного моментов. Следовательно, состояния с различными Таким образом, каждый терм ряда Итак, каждый ряд термов, кроме S, распадается на два ряда — структура термов оказывается дублетной (двойной). Термы принято обозначать символами:
Правый нижний индекс дает значение j. Верхний левый индекс указывает мультиплетность термов. Хотя ряд S является одиночным, при символе терма также ставится 2, чтобы показать, что этот ряд принадлежит к системе термов, в целом дублетной. С учетом тонкой структуры схема термов выглядит более сложно, о чем дают представление схемы уровней натрия (рис. 31.1) и цезия (рис. 31.2). Схему для натрия следует сравнить со схемой, изображенной на рис. 29.1. Поскольку мультиплетное расщепление термов D и F для натрия очень мало, подуровни D и F, отличающиеся значениями Для квантового числа полного момента импульса атома имеется правило отбора
Мультиплетное расщепление у цезия значительно больше, чем у натрия. На схеме цезия видно, что тонкая структура диффузной серии состоит не из двух линий, а из трех:
Возникновение этих линий пояснено дополнительно на рис. 31.3. Изображенный пунктиром переход
Рис. 31.1, Толщина линий на схеме примерно соответствует интенсивности спектральных линий. Совокупность получающихся линий выглядит как дублет, у которого одна из компонент в свою очередь оказывается двойной. Такая группа линий называется не триплетом, а сложным дублетом, так как она возникает в результате комбинации дублетных термов. Заметим, что в связи с существованием спина электрона естественно возникает вопрос о том, что и у водородного атома уровни с
Рис. 31.2. Тонкая структура водородного спектра действительно была обнаружена экспериментально. Обусловленное спином расщепление энергетических уровней является релятивистским эффектом. Релятивистская квантовая теория дает для расстояния между уровнями тонкой структуры
Здесь Она определяется выражением
С помощью формулы (31.8) можно оценить величину мультиплетного расщепления уровней. Расстояния между уровнями, отличающимися значениями главного квантового числа, имеют величину порядка Постоянная тонкой структуры принадлежит к числу фундаментальных констант природы. Ее смысл становится очевидным при переходе к так называемой естественной системе единиц, применяемой в квантовой электродинамике. В этой системе в качестве единицы массы принимается масса электрона те, в качестве единицы длины — комптоновская длина волны электрона
(см. формулу (31.9)). Если бы мы заряд электрона q выражали в естественных единицах, то формула для энергии взаимодействия имела бы вид
Отсюда следует, что а представляет собой квадрат элементарного заряда, выраженного в естественных единицах. Согласно (31.10) постоянная тонкой структуры характеризует энергию взаимодействия двух электронов. Иначе можно сказать, что а определяет, как сильно электрон связан с электромагнитным полем. По этой причине постоянную а называют константой связи электрона с электромагнитным полем. В выражение (31.10) для а масса электрона не входит. Следовательно, а является константой связи с электромагнитным полем для любой элементарной частицы, имеющей заряд
Рис. 31.3.
|
1 |
Оглавление
|