Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 44. Нелинейная оптикаВ световой волне, получаемой с помощью обычных (нелазерных) источников света, напряженность электрического поля Е пренебрежимо мала по сравнению с напряженностью внутреннего микроскопического поля, действующего на электроны в веществе. По этой причине оптические свойства среды (в частности, показатель преломления) и характер подавляющего большинства оптических явлений не зависят от интенсивности света. В таком случае распространение световых волн описывается линейными дифференциальными уравнениями. Поэтому долазерную оптику можно назвать линейной. Отметим, что принцип суперпозиции световых волн (выражаемый в геометрической оптике законом независимости световых лучей) справедлив только в области линейной оптики. Правда, и до создания лазеров были известны нелинейные явления в оптике. К их числу относится, например, комбинационное рассеяние света. При комбинационном рассеянии наблюдается преобразование частоты монохроматической световой волны, что является признаком нелинейности процесса. Однако в подавляющем большинстве случаев оптические процессы были линейными. После создания лазеров положение в оптике существенно изменилось. Квантовые генераторы позволяют получить световые волны с напряженностью поля почти такой же величины, как и напряженность микроскопического поля в атомах. При таких полях показатель преломления зависит от напряженности Е. В этом случае нарушается принцип суперпозиции, различные волны, распространяющиеся в среде, оказывают влияние друг на друга, и возникает ряд нелинейных оптических явлений. Опишем вкратце некоторые из них. Нелинейное отражение света. При больших интенсивностях в отраженном свете появляется излучение на второй гармонике падающего излучения, т. е. кроме отраженного луча, имеющего частоту Самофокусировка света. При обычных интенсивностях первоначально параллельный ограниченный пучок света претерпевает при своем распространении в вакууме или в какой-либо среде так называемое дифракционное расплывание, в результате чего возникает дифракционная расходимость пучка. Оказывается, что при распространении световых пучков в жидкостях и некоторых кристаллах с увеличением мощности пучка расходимость его уменьшается. При некоторой мощности, называемой критической, пучок распространяется, не испытывая расходимости. Наконец, при мощности, большей критической, пучок сжимается — происходит самофокусирование пучка в среде. Это явление обусловлено тем, что с ростом напряженности Е увеличивается показатель преломления. Поэтому среда в области, занимаемой пучком, становится оптически более плотной, что приводит к изгибанию лучей к оси пучка, т. е. к сжатию пучка. Оптические гармоники. При рассеянии лазерного пучка в жидкостях и кристаллах, кроме света с частотой падающего излучения со, наблюдается рассеянный свет с частотами, кратными первоначальной частоте (т. е. с частотами Многофотонные процессы. При обычных интенсивностях в элементарном акте взаимодействия света с веществом поглощается только один фотон, энергия которого В одном элементарном акте взаимодействия света с веществом могут поглощаться два фотона неодинаковой частоты. Это происходит в случае, когда световое поле создается двумя независимыми монохроматическими источниками. Если сумма частот этих источников удовлетворяет условию: К числу многофотонных процессов относится также многофотонный фотоэффект (многофотонная ионизация атомов). В то время как обычный (однофотонный) фотоэффект наблюдается при частотах, при которых энергия фотона больше энергии ионизации атома, многофотонный фотоэффект может происходить при частотах, в Мы привели далеко не полный перечень уже обнаруженных нелинейных явлений. Однако он достаточен для того, чтобы составить представление о том, как бурно развивается новая область оптики — нелинейная оптика.
|
1 |
Оглавление
|