Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 43. ЛазерыВ 50-х годах были созданы устройства, при прохождении через которые электромагнитные волны усиливаются за счет открытого Эйнштейном вынужденного излучения (см. предыдущий параграф). В 1953 г. советскими учеными Н. Г. Басовым и А. М. Прохоровым и независимо от них американскими учеными Таунсом и Вебером были созданы первые молекулярные генераторы, работающие в диапазоне сантиметровых волн и получившие название мазеров. Слово «мазер» происходит от первых букв английского названия Microwave Amplification by Stimulated Emission of Radiation (усиление микроволн с помощью вынужденного излучения). В 1960 г. Мейманом (США) был создан первый аналогичный прибор, работающий в оптическом диапазоне, — лазер (Light Amplification by Stimulated Emission of Radiation — усиление света с помощью вынужденного излучения). Лазеры называют также оптическими квантовыми генераторами. В предыдущем параграфе мы выяснили, что воздействующий на вещество свет частоты В случае термодинамического равновесия распределение атомов по различным энергетическим состояниям определяется законом Больцмана:
где N — полное число атомов, Из этой формулы следует, что с увеличением энергии состояния населенность уровня, т. е. количество атомов в данном состоянии, уменьшается. Число переходов между двумя уровнями пропорционально населенности исходного уровня. Следовательно, в системе атомов, находящейся в термодинамическом равновесии, поглощение падающей световой волны будет преобладать над вынужденным излучением, так что падающая волна при прохождении через вещество ослабляется. Для того чтобы получить усиление падающей волны, нужно обратить населенность энергетических уровней, т. е. сделать так, чтобы в состоянии с большей энергией
В случае инверсной населенности Изменение интенсивности света при прохождении через поглощающую среду описывается формулой
В веществе с инверсной населенностью энергетических уровней вынужденное излучение может превысить поглощение света атомами, вследствие чего падающий пучок света при прохождении через вещество будет усиливаться. В случае усиления падающего пучка явление протекает так, как если бы коэффициент поглощения Создание лазера стало возможным после того, как были найдены способы осуществления инверсной населенности уровней в некоторых веществах. В построенном Мейманом первом лазере рабочим телом был цилиндр из розового рубина. Диаметр стержня был порядка 1 см, длина — около 5 см. Торцы рубинового стержня были тщательно отполированы и представляли собой строго параллельные друг другу зеркала. Один торец покрывался плотным непрозрачным слоем серебра, другой торец покрывался таким слоем серебра, который пропускал около 8 % упавшей на него энергии. Рубин представляет собой окись алюминия ( При поглощении света ионы хрома
Рис. 43.1. На первом этапе возбужденные ионы отдают часть своей энергии кристаллической решетке и переходят в метастабильное состояние. Переход из метастабильного состояния в основное запрещен правилами отбора. Поэтому среднее время жизни иона в метастабильном состоянии
Рис. 43.2. В лазере рубин освещается импульсной ксеноновой лампой (рис. 43.1), которая дает свет с широкой полосой частот. При достаточной мощности лампы большинство ионов хрома переводится в возбужденное состояние. Процесс сообщения рабочему телу лазера энергии для перевода атомов в возбужденное состояние называется накачкой. На рис. 43.2 дана схема уровней иона хрома Возбуждение ионов за счет накачки изображено стрелкой В течение этого времени некоторые ионы перейдут спонтанно из полосы 3 на основной уровень 1. Такие переходы показаны стрелкой Стрелка Процесс образования каскада изображен схематически на рис. 43.3. До начала импульса ионы хрома находятся в основном состоянии (черные кружки на рис. 43.3, а). Свет накачки (сплошные стрелки на рис. 43.3, б) переводит большинство ионов в возбужденное состояние (светлые кружки). Каскад начинает развиваться, когда возбужденные ионы спонтанно излучают фотоны (пунктирные стрелки на рис. 43.3, в) в направлении, параллельном оси кристалла (фотоны, испущенные по другим направлениям, выходят из кристалла). Фотоны размножаются за счет вынужденного излучения. Этот процесс развивается (рис. 43.3, г и д), так как фотоны многократно проходят вдоль кристалла, отражаясь от его торцов.
Рис. 43.3. Когда пучок становится достаточно интенсивным, часть его выходит через полупрозрачный торец кристалла (рис. 43.3, е). Лазеры на рубине работают в импульсном режиме (с частотой порядка нескольких импульсов в минуту). Внутри кристалла выделяется большое количество тепла. Поэтому его приходится интенсивно охлаждать, что осуществляется с помощью жидкого воздуха. В 1961 г. Джаваном был создан первый газовый лазер, работающий на смеси гелия и неона. В 1963 г. были созданы первые полупроводниковые лазеры. В настоящее время список лазерных материалов насчитывает много десятков твердых и газообразных веществ. Излучение лазеров отличается рядом замечательных особенностей. Для него характерны: 1) строгая монохроматичность ( Высокая когерентность излучения открывает широкие перспективы использования лазеров для целей радиосвязи, в частности для направленной радиосвязи в космосе. Если будет найден метод модуляции и демодуляции света, один лазер сможет заменить по объему передаваемой информации всю систему связи между восточным и западным побережьями США. Высокая когерентность лазерного пучка позволила осуществить такое замечательное явление как голография. Сказанное далеко не исчерпывает всех возможностей лазера. Он является совершенно новым типом источника света, и пока еще трудно представить себе все возможные области его применения.
|
1 |
Оглавление
|