Главная > Техника сверхвысоких частот. Том 1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.2. СВОЙСТВА МАГНИТНЫХ МАТЕРИАЛОВ

8.2.1. Типы ферритов

Из множества типов гиромагнитных сред самыми эффективными являются ферромагнетики [485]. Для работы в диапазоне СВЧ наиболее удобны так называемые ферриты [124, 343, 344, 352]. Эти ферромагнитные окислы представляют собой химические соединения, ионы которых связаны электровалентными силами, и поэтому их удельное сопротивление достигает величин от 10 до 1010 ом-см. Начальная магнитная проницаемость ферритов лежит в пределах между 10 и 3000. Отсюда проистекают низкие диэлектрические потери и значительная по сравнению с ферромагнитными металлами глубина поверхностного слоя. Ферритам посвящено большое количество работ [199, 275, 347, 349].

Один обширный класс ферритов имеет общую химическую формулу где двухвалентный металл с радиусом иона . В случае простых ферритов металлами служат или один из переходных элементов или возможны также комбинации этих элементов.

Кроме того, под символом может подразумеваться комбинация ионов со средней валентностью, равной двум. Трехвалентные ионы железа частично или полностью могут замещаться другими трехвалентными ионами, такими как или . В результате образуются смешанные кристаллы с алюминатами и хроматами [150, 431].

В более редких случаях кислород может быть замещен серой. Ферриты этого класса имеют ту же самую кубическую кристаллическую структуру, что и минерал (рис. 8.5).

Двухвалентные ионы могут располагаться в тетраэдрических или октаэдрических позициях решетки, в зависимости от этого кристаллическая структура принадлежит соответственно к нормальному или к обращенному типам . На практике обычно используются ферриты с частично обращенной структурой, причем распределение ионов в узлах решетки определяется технологией изготовления образца. Например, смешанный никелево-цинковый феррит, состоящий из двух простых ферритов нормального и обращенного типов, можно представить формулой Здесь а и молекулярные доли цинкового и никелевого ферритов, а скобки выделяют ионы, заполняющие октаэдрические позиции.

Рис. 8. 5. Единичная ячейка структуры шпинеля. Большие сферы изображают кислород. Маленькие заштрихованные сферы представляют ионы в октаэдрических позициях, а маленькие черные сферы—ионы в тетраэдрических позициях. Иоиы вычерчены лишь для двух восьми октант.

Магнитный момент феррита не будет представлять собой сумму магнитных моментов всех ионов, поскольку магнитные диполи, заполняющие тетраэдрические и октаэдрические позиции, стремятся скомпенсировать друг друга [145, 247]. Уменьшение приведенного результирующего момента является сущностью понятия ферримагнетизма. Например, магнитный момент при очень низких температурах равен Умножив это число на 7,03 и разделив на молекулярный вес феррита, получим величину насыщения намагниченности, выраженную в . С ростом температуры намагниченность падает из-за теплового движения, преодолевающего выравнивающее действие обменной энергии, а также из-за уменьшения кристаллической анизотропии. При температуре Кюри намагниченность достигает нуля.

Существует много типов ферритов, пригодных для работы на сверхвысоких частотах [175]. В табл. 8.1 приведены магнитные постоянные характерных материалов при комнатной температуре.

Ферриты обычно изготавливаются [302] путем смешивания необходимых окислов, иногда нитратов или карбонатов, в соответствующих пропорциях и дальнейшего обжига при температуре 1000—1500° С до образования твердой поликристаллической массы. Первоначально на сверхвысоких частотах использовались ферриты, содержащие такие, как серии

Интенсивное развитие техники привело, однако, как к созданию улучшенных соединений [48, 401], так и к получению новых типов ферритов. Была использована медь [229, 422], тогда как другие [2]

Таблица 8.1 Магнитные постоянные ферритов при

смешанные ферриты имели следующий молекулярный состав: 52% Заметим, что последний состав имеет нехватку по сравнению со стехиометрическим составом, что позволяет снизить высокую проводимость на постоянном токе, обусловленную образованием двухвалентного железа [305].

В низкочастототной части диапазона СВЧ предпочитают использовать из-за малого магнитного момента [381, 420, 421, 423] или [493].

Существуют ферриты, которые обладают структурами, близкими к гексагональным кристаллическим структурам. Их можно рассматривать как смесь окислов где под подразумевается двухвалентный ион из первых переходных рядов.

В большинстве случаев ион может замещаться частично или полностью ионами или Можно такжезаменить трехвалентные ионы железа на трехвалентные ноны или на эквивалентные комбинации двух- и четырехвалентных ионов. Одна из таких гексагональных структур [174] имеет следующий состав: Материал с химическим составом известный как ферроксдюр [174], обладает кристаллической структурой, напоминающей структуру магнето-плюмбита.

Структура этих ферритов состоит из областей, имеющих попеременно слой кислорода с кубической плотно упакованной решеткой и слой бария с гексагональной решеткой.

Ферромагнитные окислы с общей формулой где символом обозначен иттрий или редкоземельный металл с радиусом иона менее имеет кристаллическую структуру типа граната [41, 139, 193].

Измерения в интервале температур от 2,2 до 700° К показали [270], что при данных температурах намагниченность определяется двумя факторами ферромагнитной и парамагнитной природы.

Для Но или ферромагнитный член, значительный при низких температурах, уменьшается с увеличением температуры. При температуре компенсации указанный член исчезает; затем он снова возникает и окончательно исчезает при температуре Кюри. Для или при низких температурах намагниченность вначале

низкая; с увеличением температуры она возрастает, проходит через максимум и уменьшается до тех пор, пока не исчезнет совсем при температуре Кюри.

Для Y или кривая намагниченности в зависимости от температуры аналогична кривой в случае нормального ферромагнетизма.

Эти результаты могут быть объяснены на ферримагнитной модели, где магнитный момент ионов антипараллелен магнитному моменту ионов . В точке компенсации разница между этими двумя моментами равна нулю; точки Кюри определяются взаимодействиями между ионами

Гранаты характеризуются относительно низкими намагниченностями насыщения; так, для иттриево-железного граната ее значение равно

Монокристаллы легко выращиваются [252] из расплавов окислов свинца, железа и редкоземельных металлов. Подходящим составом при этом является

Расплав нужно охладить от 1325 до скоростью порядка 1 град/час. Кристаллы могут быть получены из затвердевших расплавов путем нагревания в растворе азотной или уксусной кислоты.

1
Оглавление
email@scask.ru