Главная > Радиотехнические цепи и сигналы
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

2.4. СПЕКТРЫ ПРОСТЕЙШИХ ПЕРИОДИЧЕСКИХ

СИГНАЛОВ

Рассмотрим несколько примеров периодических колебаний, часто используемых в различных радиотехнических устройствах.

1. ПРЯМОУГОЛЬНОЕ КОЛЕБАНИЕ (РИС. 2.3)

Подобное колебание, часто называемое меандром, находит особенно широкое применение в измерительной технике.

При выборе начала отсчета времени в соответствии с рис. 2.3, а функция является нечетной, а рис. 2.3, б — четной. Применяя формулы (2.24), находим для нечетной функции (рис. 2.3, а) при s(t)=e(t):

Рис. 2.3. Периодическое колебание прямоугольной формы (меандр)

Рис. 2.4. Коэффициенты комплексного (а) и тригонометрического (б) ряда Фурье колебания, показанного на рис. 2.3

Учитывая, что , получаем

Начальные фазы в соответствии с (2.27) равны для всех гармоник.

Запишем ряд Фурье в тригонометрической форме

Спектр коэффициентов комплексного ряда Фурье показан на рис. 2.4, а, а тригонометрического ряда — на рис. 2.4, б (при ).

При отсчете времени от середины импульса (рис. 2.3, б) функция является четной относительно t и для нее

Графики 1-й гармоник и их суммы изображены на рис. 2.5, а. На рис. 2.5, б эта сумма дополнена 5-й гармоникой, а на рис. 2.5, в — 7-й.

С увеличением числа суммируемых гармоник сумма ряда приближается к функции всюду, кроме точек разрыва функции, где образуется выброс. При величина этого выброса равна , т. е. сумма ряда отличается от заданной функции на 18%. Этот дефект сходимости в математике получил название явления Гиббса.

Рис. 2.5. Суммирование 1-й и 3-й гармоник (а), 1, 3 и 5-й гармоник (б), 1, 3, 5 и 7-й гармоник (в) колебания, показанного на рис. 2.3

Рис. 2.6 Периодическое колебание пилообразной формы

Рис. 2.7. Сумма первых пяти гармоник колебания, показанного на рис. 2.6

Несмотря на то, что в рассматриваемом случае ряд Фурье не сходится к разлагаемой функции в точках ее разрыва, ряд сходится в среднем, поскольку при выбросы являются бесконечно узкими и не вносят никакого вклада в интеграл (2.13).

2. ПИЛООБРАЗНОЕ КОЛЕБАНИЕ (РИС. 2.6)

С подобными функциями часто приходится иметь дело в устройствах для развертки изображения в осциллографах. Так как эта функция является нечетной, ряд Фурье для нее содержит только синусоидальные члены. С помощью формул (2.24)-(2.31) нетрудно определить коэффициенты ряда Фурье. Опуская эти выкладки, напишем окончательное выражение для ряда

Как видим, амплитуды гармоник убывают по закону , где . На рис. 2.7 показан график суммы первых пяти гармоник (в увеличенном масштабе).

3. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ (РИС. 2.8)

Ряд Фурье для этой функции имеет следующий вид:

(2.36)

Рис. 2.8. Сумма трех первых гармоник периодической функции

Рис. 2.9. Периодическая последовательность прямоугольных импульсов с большой скважностью

На рис. 2.8 изображена сумма первых трех членов этого ряда. В данном случае отметим более быстрое убывание амплитуд гармоник, чем в предыдущих примерах. Это объясняется отсутствием разрывов (скачков) в функции.

4. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ (РИС 2.9)

Применяя формулу (2.32), находим среднее значение (постоянную составляющую)

и коэффициент гармоники

Так как функция четная, . Таким образом,

Величина называется скважностью импульсной последовательности. При больших значениях N спектр сигнала содержит очень большое число медлённо убывающих по амплитуде гармоник (рис. 2.10). Расстояние между спектральными линиями очень мало, а амплитуды соседних гармоник близки по величине. Это наглядно вытекает из формулы (2.38), которую в данном случае удобно представить в несколько измененном виде

Рис. 2.10. Спектр импульсной последовательности, показанной на рис. 2.9

При малых значениях можно считать

Постоянная составляющая, равная вдвое меньше амплитуды 1-й гармоники. При построении спектра коэффициентов величина приближенно равнялась бы .

Categories

1
Оглавление
email@scask.ru