Главная > Радиотехнические цепи и сигналы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 4. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ СИГНАЛОВ

4.1. ОБЩИЕ ОПРЕДЕЛЕНИЯ

Информация, передаваемая по каналу связи или извлекаемая в результате измерения, заключена в сигнале.

До приема сообщения (до испытания) сигнал следует рассматривать как случайный процесс, представляющий собой совокупность (ансамбль) функций времени, подчиняющихся некоторой общей для них статистической закономерности. Одна из этих функций, ставшая полностью известной после приема сообщения, называется реализацией случайного процесса. Эта реализация является уже не случайной, а детерминированной функцией времени.

Важной, но не исчерпывающей характеристикой случайного процесса является присущий ему одномерный закон распределения вероятностей.

На рис. 4.1 изображена совокупность функций , образующих случайный процесс . Значения, которые могут принимать отдельные функции в момент времени , образуют совокупность случайных величин

Рис. 4.1. Совокупность функций, образующих случайный процесс

Вероятность того, что величина при измерении попадает в какой-либо заданный интервал (рис. 4.1), определяется выражением

Функция представляет собой дифференциальный закон распределения случайной величины называется одномерной плотностью вероятности, а — интегральной вероятностью.

Функция имеет смысл для случайных непрерывного типа, могущих принимать любое значение в некотором интервале. При любом характере функции должно выполняться равенство

где — границы возможных значений

Если же является случайной величиной дискретного типа и может принимать любое из конечного числа дискретных значений, то (4.2) следует заменить суммой

где вероятность, соответствующая величине .

Задание одномерной плотности вероятности позволяет произвести статистическое усреднение как самой величины так и любой функции . Под статистическим усреднением подразумевается усреднение по множеству (по ансамблю) в каком-либо «сечении» процесса, т. е. в фиксированный момент времени.

Для практических приложений наибольшее значение имеют следующие параметры случайного процесса:

математическое ожидание

дисперсия

среднее квадратическое отклонение

Одномерная плотность вероятности недостаточна для полного описания процесса, так как она дает вероятностнре представление о случайном процессе X(t) только в отдельные фиксированные моменты времени.

Более полной характеристикой является двумерная плотность вероятности позволяющая учитывать связь значений принимаемых случайной функцией в произвольно выбранные моменты времени

Исчерпывающей вероятностной характеристикой случайного процесса является -мерная плотность вероятности при достаточно больших n. Однако большое число задач, связанных с описанием случайных сигналов, удается решать на основе двумерной плотности вероятности.

Задание двумерной плотности вероятности позволяет, в частности, определить важную характеристику случайного процесса — ковариационную функцию

Согласно этому определению ковариационная функция случайного процесса представляет собой статистически усредненное произведение значений случайной функции в моменты

Для каждой реализации случайного процесса произведение является некоторым числом. Совокупность реализаций образует множество случайных чисел, распределение которых характеризуется двумерной плотностью вероятности При заданной функции операция усреднения по множеству осуществляется по формуле

При двумерная случайная величина вырождается в одномерную величину Можно поэтому написать

Таким образом, при нулевом интервале между моментами времени ковариационная функция определяет величину среднего квадрата случайного процесса в момент

При анализе случайных процессов часто основной интерес представляет его флуктуационная составляющая. В таких случаях применяется корреляционная функция

Подставляя в вместо вместо можно получить следующее выражение:

При выражение (4.8) в соответствии с (4.4) определяет дисперсию случайного процесса Следовательно,

Исследование случайного процесса, а также воздействия его на радиоцепи существенно упрощается при стационарности процесса.

Случайный процесс называется строго стационарным, если его плотность вероятности произвольного порядка зависит только от интервалов и не зависит от положения этих интервалов в области изменения аргумента

В радиотехнических приложениях теории случайных процессов условие стационарности обычно ограничивается требованием независимости от времени только одномерной и двумерной плотностей вероятности (случайный процесс, стационарный в широком смысле). Выполнение этого условия позволяет считать, что математическое ожидание, средний квадрат и дисперсия случайного процесса не зависят от времени, а корреляционная функция зависит не от самих моментов времени , а только от интервала между ними

Стационарность процесса в широком смысле можно трактовать как стационарность в рамках корреляционной теории (для моментов не выше второго порядка).

Таким образом, для случайного процесса, стационарного в широком смысле, предыдущие выражения можно записывать без обозначения фиксированных моментов времени. В частности,

Дальнейшее упрощение анализа случайных процессов достигается при использовании условия эргодичности процесса. Стационарный случайный процесс называется эргодическим, если при определении любых статистических характеристик усреднение по множеству реализаций эквивалентно усреднению по времени одной теоретически бесконечно длинной реализации.

Условие эргодичности случайного процесса включает в себя и условие его стационарности. В соответствии с определением эргодического процесса соотношения эквивалентны следующим выражениям, в которых операция усреднения по времени обозначена чертой:

Если представляет собой электрический сигнал (ток, напряжение), то — постоянная составляющая случайного сигнала, — средняя мощность флуктуации сигнала [относительно постоянной составляющей х(t)].

Выражение (4.15) внешне совпадает с определением (2.131) корреляционной функции детерминированного сигнала (периодического).

Часто применяется нормированная корреляционная функция

Функции характеризуют связь (корреляцию) между значениями разделенными промежутком . Чем медленнее, плавнее изменяется во времени тем больше промежуток , в пределах которого наблюдается статистическая связь между мгновенными значениями случайной функции.

При экспериментальном исследовании случайных процессов используются временнйе корреляционные характеристики процесса (4.15)-(4.19), поскольку, как правило, экспериментатору доступно наблюдение одной реализации сигнала, а не множества его реализаций. Интегрирование выполняется, естественно, не в бесконечных пределах, а на конечном интервале Т, длина которого должна быть тем больше, чем выше требование к точности результатов измерения.

1
Оглавление
email@scask.ru