Глава 4. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ СИГНАЛОВ
4.1. ОБЩИЕ ОПРЕДЕЛЕНИЯ
Информация, передаваемая по каналу связи или извлекаемая в результате измерения, заключена в сигнале.
До приема сообщения (до испытания) сигнал следует рассматривать как случайный процесс, представляющий собой совокупность (ансамбль) функций времени, подчиняющихся некоторой общей для них статистической закономерности. Одна из этих функций, ставшая полностью известной после приема сообщения, называется реализацией случайного процесса. Эта реализация является уже не случайной, а детерминированной функцией времени.
Важной, но не исчерпывающей характеристикой случайного процесса является присущий ему одномерный закон распределения вероятностей.
На рис. 4.1 изображена совокупность функций , образующих случайный процесс . Значения, которые могут принимать отдельные функции в момент времени , образуют совокупность случайных величин
Рис. 4.1. Совокупность функций, образующих случайный процесс
Вероятность того, что величина при измерении попадает в какой-либо заданный интервал (рис. 4.1), определяется выражением
Функция представляет собой дифференциальный закон распределения случайной величины называется одномерной плотностью вероятности, а — интегральной вероятностью.
Функция имеет смысл для случайных непрерывного типа, могущих принимать любое значение в некотором интервале. При любом характере функции должно выполняться равенство
где — границы возможных значений
Если же является случайной величиной дискретного типа и может принимать любое из конечного числа дискретных значений, то (4.2) следует заменить суммой
где — вероятность, соответствующая величине .
Задание одномерной плотности вероятности позволяет произвести статистическое усреднение как самой величины так и любой функции . Под статистическим усреднением подразумевается усреднение по множеству (по ансамблю) в каком-либо «сечении» процесса, т. е. в фиксированный момент времени.
Для практических приложений наибольшее значение имеют следующие параметры случайного процесса:
математическое ожидание
дисперсия
среднее квадратическое отклонение
Одномерная плотность вероятности недостаточна для полного описания процесса, так как она дает вероятностнре представление о случайном процессе X(t) только в отдельные фиксированные моменты времени.
Случайный процесс называется строго стационарным, если его плотность вероятности произвольного порядка зависит только от интервалов и не зависит от положения этих интервалов в области изменения аргумента
В радиотехнических приложениях теории случайных процессов условие стационарности обычно ограничивается требованием независимости от времени только одномерной и двумерной плотностей вероятности (случайный процесс, стационарный в широком смысле). Выполнение этого условия позволяет считать, что математическое ожидание, средний квадрат и дисперсия случайного процесса не зависят от времени, а корреляционная функция зависит не от самих моментов времени , а только от интервала между ними
Стационарность процесса в широком смысле можно трактовать как стационарность в рамках корреляционной теории (для моментов не выше второго порядка).
Таким образом, для случайного процесса, стационарного в широком смысле, предыдущие выражения можно записывать без обозначения фиксированных моментов времени. В частности,
Дальнейшее упрощение анализа случайных процессов достигается при использовании условия эргодичности процесса. Стационарный случайный процесс называется эргодическим, если при определении любых статистических характеристик усреднение по множеству реализаций эквивалентно усреднению по времени одной теоретически бесконечно длинной реализации.
Условие эргодичности случайного процесса включает в себя и условие его стационарности. В соответствии с определением эргодического процесса соотношения эквивалентны следующим выражениям, в которых операция усреднения по времени обозначена чертой:
Если представляет собой электрический сигнал (ток, напряжение), то — постоянная составляющая случайного сигнала, — средняя мощность флуктуации сигнала [относительно постоянной составляющей х(t)].
Выражение (4.15) внешне совпадает с определением (2.131) корреляционной функции детерминированного сигнала (периодического).
Часто применяется нормированная корреляционная функция
Функции характеризуют связь (корреляцию) между значениями разделенными промежутком . Чем медленнее, плавнее изменяется во времени тем больше промежуток , в пределах которого наблюдается статистическая связь между мгновенными значениями случайной функции.
При экспериментальном исследовании случайных процессов используются временнйе корреляционные характеристики процесса (4.15)-(4.19), поскольку, как правило, экспериментатору доступно наблюдение одной реализации сигнала, а не множества его реализаций. Интегрирование выполняется, естественно, не в бесконечных пределах, а на конечном интервале Т, длина которого должна быть тем больше, чем выше требование к точности результатов измерения.