Метод анализа спектра тока
аналогичен методу, использованному в § 8.3. В данном случае в основу анализа можно положить нелинейную вольт-кулонную характеристику варактора
где
определяется выражением (8.4);
Применяя выражение (8.2) к ряду (8.88), находим ток через нелинейную емкость
Рассмотрим структуру первых трех слагаемых этого ряда при
.
Первое слагаемое
соответствует току частоты через обычную линейную емкость
.
Второе слагаемое
вносит в спектр тока
составляющую с частотой
и амплитудой
.
Третье слагаемое
приводится к виду
Из приведенных соотношений видна закономерность образования спектра тока
при гармоническом воздействии. Как и для цепи с безынерционным резистивным элементом, слагаемые ряда (8.90) с четными степенями привносят четные гармоники, а слагаемые с нечетными степенями — нечетные гармоники. Наивысший порядок гармоник равен степени полинома k, аппроксимирующего вольт-кулонную характеристику. Постоянная составляющая в спектре тока отсутствует.
Функциональная схема умножителя частоты на варакторе представлена на рис. 8.49, а. Сопротивление полупроводникового материала и активная проводимость, шунтирующая нелинейную емкость варактора, этой схемой не учитываются.
Для частоты
гармоники тока
сопротивление нагрузки равно R, а для всех остальных частот сопротивление можно считать пренебрежимо малым (при достаточно высокой добротности контура).
Рис. 8.49. Умножение частоты с помощью варактора: а) последовательная, б) параллельная схемы замещения
Напряжение на контуре в соответствии с (8.91), (8.92) можно записать в форме
где
— амплитуда
гармоники тока
Введение нагрузочного контура, поглощающего мощность, изменяет структуру спектра тока
определяемого в холостом режиме выражением (8.90). Для определения структуры спектра в режиме нагрузки необходимо учесть взаимодействие на нелинейной емкости двух напряжений:
. С этой целью в исходном выражении (8.90)
должно быть дополнено слагаемым
Выполнив затем преобразования, аналогичные (8.91), (8.92), найдем все спектральные составляющие тока
Для дальнейшего анализа последовательную схему замещения (см. рис. 8.49, а) целесообразно преобразовать в параллельную схему (см. рис. 8.49, б). В параллельной схеме замещения для каждой из спектральных составляющих тока
предусмотрена отдельная ветвь с фильтром, пропускающим (без ослабления) только одну из гармоник. Напряжение генератора
, как и в схеме рис. 8.49, а, оказывается приложенным непосредственно к
а токи с частотами
обусловленные нелинейностью
замыкаются во внешней цепи, не создавая никакой нагрузки для генератора с частотой
Исключение составляет лишь ветвь, содержащая нагрузочный контур. Падение напряжения, создаваемое
гармоникой тока на контуре, прикладывается к
последовательно с
Проиллюстрируем определение спектральных составляющих тока и энергетических соотношений в схеме умножителя на примере удвоения частоты. Для выявления принципиальной стороны вопроса облегчим задачу допущением, что вольт-кулонная характеристика варактора в пределах используемого участка удовлетворительно аппроксимируется полиномом второй степени. Тогда амплитуда тока второй гармоники
определяется лишь квадратичным членом ряда (8.88).
Подставив в (8.91) вместо
сумму
после несложных тригонометрических преобразований получим
Токи с частотами
замыкающиеся через «пустые» ветви схемы замещения, не выделяют мощности и могут не приниматься во внимание.
Первое слагаемое в правой части (8.94), совпадающее с (8.91), определяет ток в ветви, содержащей нагрузочный контур с резонансной частотой
. Амплитуда этого тока
а мощность, выделяемая в сопротивлении R,
Второе слагаемое в правой части (8.94) определяет ток основной частоты
нагружающий генератор
Амплитуда этого тока с учетом (8.95)
Следовательно, мощность, отбираемая от генератора
,
Сопоставление выражений (8.96) и (8.98) показывает, что
.
Легко убедиться, что при увеличении амплитуды Е входного колебания и связанном с этим возрастанием влияния членов ряда (8.88) с более высокими степенями структура спектра тока
усложнится, но соотношение между
останется прежним.
В равенстве
заключается принципиальное отличие умножителя частоты с энергоемким элементом
от безынерционного умножителя на транзисторе, рассмотренного в § 8.6. В транзисторном умножителе источник входного сигнала с частотой
лишь управляет током коллектора, энергия же колебания с частотой
поставляется источником постоянного тока в цепи коллектора. В варакторном умножителе единственным источником энергии является генератор частоты
который поставляет энергию в нелинейную емкость
, играющую роль накопителя, откуда энергия «перекачивается» в колебание с частотой
. При пренебрежении потерями в варакторе КПД умножителя равен единице. В реальном устройстве с учетом потерь в сопротивлении самого варактора и в согласующих цепях КПД достигает 60-70 %.
Различные варианты построения варакторных СВЧ умножителей частоты, а также различные режимы их работы изучаются в курсе «Радиопередающие устройства».