Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
8.10. ЧАСТОТНОЕ И ФАЗОВОЕ ДЕТЕКТИРОВАНИЕВходной радиосигнал представим в виде
Для снятия нежелательной AM обязательно применение амплитудного ограничения. Тогда на входе собственно частотного детектора (ЧД) напряжение будет
Напряжение на выходе ЧД должно воспроизводить закон изменения мгновенной частоты радиосигнала. Поэтому для идеального ЧД получаем следующие функциональные соотношения:
или
где Предполагается, что Поэтому для осуществления частотного детектирования требуются дополнительные преобразования. Большое распространение получили, например, частотные детекторы, представляющие собой сочетание двух узлов: 1) избирательной линейной цепи, преобразующей частотную модуляцию в амплитудную; 2) амплитудного детектора. В качестве линейной цепи можно использовать любую электрическую цепь, обладающую неравномерной частотной характеристикой: цепи RL, RC, фильтры, колебательные контуры и т. д.
Рис. 8.36. Одноконтурный частотный детектор
Рис. 8.37. К объяснению работы детектора, представленного на рис. 8.36 В высокочастотной технике большое распространение получили колебательные цепи. Схема частотного детектора, содержащего простой колебательный контур, представлена на рис. 8.36. Если резонансная частота контура сор отличаете от средней частоты модулированного колебания Изменение амплитуды Недостатком рассмотренной схемы является необходимость настройки контура на частоту, отличную от частоты немодулированного колебания. Кроме того, резонансная кривая одиночного колебательного контура имеет весьма ограниченный линейный участок на скате. На рис. 8.38 представлена схема частотного детектора, широко распространенная в приемниках частотно-модулированных колебаний, а также в устройствах для автоматической подстройки частоты генераторов. Она содержит колебательную цепь в виде двух индуктивно связанных контуров, настроенных на частоту
Рис. 8.38. Двухконтурный частотный Детектор Пусть В отсутствие модуляции, когда частота входного напряжения совпадает с резонансными частотами контуров, напряжение Действительно, при индуктивной связи двух одинаковых контуров
Так как при
Определим напряжения
Аналогично для
Модули напряжений
а фазы симметричны относительно фазы напряжения Рассмотрим векторную диаграмму напряжений при расстройке. Пусть частота на входе детектора отклонится от резонансной частоты
Рис. 8.39. Схема замещения избирательной цепи частотного детектора (к рис. 8.38)
Рис. 8.40. Векторная диаграмма напряжений (к рис. 8.39) Вместо выражений (8.63) и (8.64) получим
Первый и второй контуры обычно берутся идентичными, поэтому отношение Вводя обозначение
При определении напряжения на выходе частотного детектора необходимо учитывать, что в процессе частотной модуляции изменяются сопротивления, вносимые из второго контура в первый. Поэтому при неизменной амплитуде тока (промежуточной частоты) в цепи коллектора напряжение
где Наконец, выпрямленные напряжения на выходах двух амплитудных детекторов (см. рис. 8.38) зависят от угла отсечки 0. Практически можно исходить из условия С учетом дифференциального включения нагрузок, окончательное выражение для напряжения звуковой частоты на выходе частотного детектора приводится к виду
Зависимость При выборе параметров контуров и величины связи основным требованием является обеспечение линейности характеристики частотного детектора и максимально возможной ее крутизны. С этой точки зрения наиболее предпочтительным является параметр связи
Рис. 8.41. Семейство характеристик двухконтурного частотного детектора: В качестве примера сопоставим приведенные данные с параметрами частотного детектора, используемого в звуковом канале телевизионного приемника. Детектор включен на выходе усилителя промежуточной частоты
а максимальное значение Напряжение частоты Из проведенного рассмотрения видно, что в схеме, представленной на рис. 8.38, осуществляются следующие преобразования: 1) девиация частоты входного колебания преобразуется в девиацию фазы напряжения В последнее время стали применяться частотные детекторы, в которых преобразование девиации Дальнейшая миниатюризация ЧД достигается при использовании опорного гетеродина в виде мультивибратора, вырабатывающего стабильное меандровое колебание, с которым исходное ЧМ колебание, также преобразованное в меандр, сравнивается в фазовом детекторе (перемножителе). В результате достигается такой же эффект, что и в описанном выше ЧД, но без колебательного контура. Таким образом, полностью исключаются катушки индуктивности и открывается возможность перехода на интегральные микросхемы. Рассмотрим теперь принцип работы фазового детектора. Пусть фаза высокочастотного колебания, подлежащего детектированию, изменяется по закону
т. e. выходное напряжение будет пропорционально производной фазы входного колебания. Отсюда видно, что для осуществления фазового детектирования можно использовать обычный частотный детектор. Необходимо лишь дополнить его корректирующей цепью, осуществляющей интегрирование выходного напряжения, т. е. цепью с частотной Простейшие интегрирующие устройства описаны в § 6.5. Подобный прием используется при детектировании колебаний с медленно меняющейся фазой, т. е. когда производная фазы конечна (например, при передаче речи). В случае же скачкообразного изменения фазы, а также при необходимости сравнения фазы принимаемого колебания с фазой опорного (эталонного) колебания применяются специальные фазовые детекторы, в которых выходное напряжение пропорционально огибающей напряжения, получаемого при суммировании колебаний
|
1 |
Оглавление
|