Главная > Квантовая механика и интегралы по траекториям
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 5. ИЗМЕРЕНИЯ И ОПЕРАТОРЫ

До сих пор мы описывали квантовомеханические системы таким образом, как если бы собирались измерять лишь пространственные координаты и время. Все измерения в квантовомеханических системах можно действительно свести в сущности лишь к определению положений и моментов времени (например, к определению положения стрелки измерительного прибора или времени пролета частицы). Поэтому теория, сформулированная на основе понятий, соответствующих пространственно-временным измерениям, будет в принципе достаточно полной для того, чтобы описывать все явления. Тем не менее имеет смысл попытаться непосредственно выяснить вопрос, касающийся, скажем, измерения импульса, не требуя при этом, чтобы окончательное показание прибора сводилось к измерению положений, и не рассматривая в деталях, какие именно части прибора измеряют импульс. Поэтому в данной главе мы не будем концентрировать наше внимание на амплитуде вероятности измерения пространственных координат, а вместо этого рассмотрим амплитуду вероятности найти определенное значение импульса, энергии или какой-либо другой физической величины.

В § 1 этой главы мы покажем, как можно описать квантовомеханическую систему, используя понятия импульса и энергии. Далее, в § 2 мы расширим рассмотрение, что позволит нам в общем случае исследовать квантовомеханическую систему в различных представлениях. Преобразующие функции, которые позволяют переходить от одного представления к другому, имеют много интересных свойств. Среди них понятие оператора, которое было введено в гл. 4 и будет обсуждаться далее в § 3.

 

1
Оглавление
email@scask.ru