Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
РЕАКЦИИ АЛЬДЕГИДОВ И КЕТОНОВРеакции со спиртамиВ присутствии минеральных кислот альдегиды и кетоны реагируют с одним или двумя молями спирта:
Если взять карбонильное соединение и избыток спирта, то равновесие будет сдвинуто вправо и будет образовываться ацеталь или кеталь. Напротив, при нагревании ацеталей и кеталей с избытком воды в кислой среде происходит гидролиз с образованием альдегида или кетона:
Во втором примере обе гидроксильные группы, участвующие в образовании кеталя, находились в одной молекуле спирта -этандиола), поэтому кеталь имеет циклическое строение. Сравнительно инертные ацетали и кетали используются как защитные группы для защиты карбонильной группы от нежелательных реакций в ходе многостадийного синтеза. Ниже показан фрагмент многоста дийного синтеза, включающий защиту карбонильной группы: (см. скан) Исходное соединение А имеет две карбонильные группы, а в конечном продукте гидрокортизоне одна из кетонных групп должна быть восстановлена в спиртовую. Алюмогидрид лития восстановит обе кетонные группы, причем та, которую желательно сохранить неизменной, будет восстанавливаться даже быстрее, поскольку подход реагента к другой группе затруднен из-за стерических препятствий. Чтобы устранить эту трудность, проводят реакцию вещества А с одним молем 1,2-этандиола (этиленгликоля). При этом кеталь образует стерическй более доступная карбонильная группа, которая, таким образом, оказывается защищенной от действия восстановителей или других реагентов, взаимодействующих с кетонами. Теперь можно восстановить свободную карбонильную группу алюмогидридом лития и получить соединение С. Обратите внимание, что алюмогидрид также восстанавливает сложно-эфирную группу до спиртовой, но не затрагивает двойную углерод-углеродную связь. Далее, проведя необходимое для дальнейших превращений ацилирование спиртовой группы боковой цепи и получив соединение снимают защитную группу действием кислоты. Требуется еще несколько стадий, чтобы превратить вещество в гидрокортизон который применяется в медицине при артрите, ревматизме и воспалительных процессах. Другим примером использования реакции образования кеталей является синтез гуанадреля, обладающего гипотензивным действием (способностью понижать давление):
(Некоторые детали этого и предыдущего синтезов опущены, чтобы сосредоточиться на обсуждаемой проблеме.) ВосстановлениеАльдегиды и кетоны восстанавливаются соответственно до первичных и вторичных спиртов. Можно использовать газообразный водород в йрисутствии катализатора, однако в лаборатории это неудобно, так как Работа с газами требует специального оборудования и навыков работы. Гораздо чаще применяются комплексные гидриды, такие, как алюмогидрид лития и боргидрид натрия. Символом обозначают любой восстановитель или
Конкретные примеры:
Боргидрид натрия можно использовать в виде водного или спиртового раствора, алюмогидрид лития можно растворять только в эфире. С помощью одного из двух показанных ниже методов карбонильные соединения можно восстановить до алканов: реакция Вольфа - Кижнера
реакция Клеменсена
Оба эти метода применимы для большинства карбонильных соединений, но если в молекуле имеются группы, чувствительные к действию кислоты, следует использовать реакцию Вольфа — Кижнера (восстановление гидразином в присутствии щелочи), а если соединение неустойчиво к действию оснований, следует предпочесть восстановление по Клеменсену амальгамой (раствором в ртути) цинка в соляной кислоте:
В последнем примере применение гидразина и основания нежелательно, так как при этом произойдет замещение атома хлора. Лучше Использовать реакцию Клеменсена. ОкислениеВ то время как кетоны не подвергаются окислению, альдегиды окисляются до карбоновых кислот очень легко. При этом могут быть использованы самые разные окислители (мы уже упоминали об этом в гл. 7 и в настоящей главе):
Примеры:
При взаимодействии с двумя молями спирта или одним молем диола альдегиды и кетоны образуют соответственно ацетали и кетали. Альдегиды и кетоны могут быть восстановлены до спиртов с помощью самых различных восстановителей. Восстановлением карбонильных соединений по Вольфу — Кижиеру или по Клеменсену получают алканы. Альдегиды легко окисляются до карбоновых кислот, кетоны в тех же условиях не реагируют. Реакции с производными аммиакаПроизводные аммиака часто используются для идентификации альдегидов и кетонов. При взаимодействии этих соединений происходит следующее:
Карбонильный атом углерода образует двойную связь с атомом азота и отщепляется молекула воды. Многие азотистые производные карбонильных соединений - твердые вещества, тогда как сами альдегиды и кетоны в большинстве своем жидкости. Получив твердое производное альдегида или кетона, сравнив его температуру плавления с табличными значениями, можно определить, какой альдегид или кетон был взят. Три наиболее распространенных типа соединений, используемых для этой цели, показаны ниже. Особенно удобны 2,4-динитрофенилгидразоны, окрашенные в яркий желтый, оранжевый или красный цвета, что также помогает идентифицировать альдегид или кетон. (см. скан) Ниже приведены температуры плавления азотистых производных некоторых альдегидов и кетонов, (температуры плавления определены с точностью ± 3 °С): (см. скан) Например, если Вы получили 2,4-динитрофенилгидразон неизвестного альдегида или кетона с температурой плавления 256 °С, следовательно, неизвестное карбонильное соединение — это, вероятно, коричный альдегид или Фбромбензальдегид. Если в дальнейшем Вы установили, что оксим имеет температуру плавления значит Ваше соединение -бромбензальдегид. Поскольку имеются данные по производным практически всех альдегидов и кетонов, они могут быть идентифицированы получением одного или нескольких азотистых производных и сравнением экспериментально найденных температур плавления с табличными значениями. ГалогенированиеАльдегиды и кетоны реагируют с галогенами в присутствии кислоты или основания, а также с гипогалогенитами, образуя -галогенированные соединения:
Например:
Для метилкетонов характерна галоформная реакция. При обработке этих соединений избытком галогена в щелочной среде происходит трехкратное галогенирование метильной группы и отщепление тригалогенметана с образованием аниона карбоновой кислоты:
Если в качестве галогена использовать иод, образуется йодоформ, представляющий собой желтое кристаллическое вещество с температурой плавления 119 °С. Эта реакция является пробой на метилкетоны. Образование желтого осадка при обработке образца избытком иода в щелочной среде свидетельствует о присутствии в образце метилкетона. Реакции присоединенияНаличие в карбонильной группе -связи между атомами углерода и кислорода делает возможным присоединение различных веществ к альдегидам и кетонам:
К этой группе реакций относится уже обсуждавшееся образование полуацеталей и полукеталей:
Большинство реакций присоединения относится к нуклеофил ьному типу. Поскольку атом углерода карбонильной группы несет частичный положительный заряд, на первой стадии нуклеофил присоединяется к атому углерода. Типичная реакция нуклеофильного присоединения - взаимодействие альдегидов и кетонов с цианидами:
Образующийся на первой стадии анион отрывает протон от молекулы растворителя. В итоге образуется органический цианид - нитрил, вихрил можно гидролизовать до карбоновой кислоты:
реакция такого типа используется в синтезе важного ненаркотического анальгетика ибупрофена:
К реакциям нуклеофильного присоединения относится и реакция альдегидов и кетонов с реактивами Гриньяра (см. гл. 7). Приведем еще несколько примеров, давая сразу продукт гидролиза:
Все эти реакции позволяют создавать новый углеродный скелет синтезировать практически любые спирты. Из формальдегида образуются первичные спирты, из других альдегидов — вторичные, а из кето нов — третичные спирты. Альдольная конденсацияАльдегиды, имеющие -водородные атомы (атомы водорода при углеродном атоме, соседнем с карбонильным), в щелочной среде вступают в реакцию конденсации, которая является важным методом создания нового углеродного скелета. Например, при обработке ацетальдегида щелочью происходит следующее:
На первой стадии образуется -гидрокеиальдегид, имеющий тривиальное название альдоль, поэтому все реакции этого типа имеют общее название альдольная конденсация. -Гидроксиальдегиды легко дегидратируются с образованием -непредельных альдегидов. В итоге образуется соединение, содержащее вдвое больше углеродных атомов, чем исходный альдегид. Общий механизмальдольной конденсации таков: 1. Гидроксид-ион отщепляет -протон у небольшой части молекул альдегида. а-Водородные атомы имеют слабокислый характер из-за резонансной стабилизации образующегося аниона:
2. Образовавшийся анион, выступая как нуклеофил, атакует карбонильную группу другой молекулы альдегида, образуя новую углерод-углеродную связь:
3. Новый анион отрывает протон от молекулы воды, регенерируя катализатор - гидроксид-ион:
4. -Гидроксиальдегид легко (часто самопроювольно) теряет воду, превращаясь в -непредельный альдегид:
В результате карбонильный атом углерода одной молекулы альдегида оказывается связанным двойной связью с -углеродным атомом другой молекулы. В приведенных ниже примерах части разных исходных молекул обведены в рамку:
-Непредельные альдегиды могут служить исходными веществами в синтезе самых разных органических соединений с новым углеродным скелетом, поскольку как карбонильная группа, так и двойная углерод-углеродная связь способны ко многим превращениям. Например:
(кликните для просмотра скана) Реакция ВиттигаАльдегиды и кетоны реагируют с так называемыми илидами фосфора с образованием веществ, имеющих новый углеродный скелет. Илиды предварительно получают из триалкилфосфинов, галогеналканов и сильного основания, например, бутиллития :
Обратите внимание, что полученный алкен содержит углеродные фрагменты карбонильного соединения и галогеналкана, а двойная связь соединяет атомы углерода, ранее соединенные с атомами кислорода и галогена. Например:
С целью идентификации альдегиды и кетоны превращают в твердые производные. Оба типа карбонильных соединений в условиях кислого или щелочного катализа галогенируются в а-положение. Метил кетоны при обработке иодом в щелочной среде образуют йодоформ, что является качественной реакцией на метилкетоны. Альдегиды и кетоны в водной среде взаимодействуют с цианидами, давая нитрилы, которые можно гидролизовать до карбоновой кислоты, содрежащей на один углеродный атом больше, чем исходное соединение. При взаимодействии альдегидов и кетонов с раактивами Гриньяра образуются спирты. Альдольная конденсация и реакция Виттига позволяют создавать новый углеродный скелет. Сводка основных положений гл. 81. В соответствии с номенклатурой IUPAC названия альдегидов и кетонов строятся путем добавления суффиксов "аль" или "он" соответственно к названиям углеводородов. Альдегиды имеют тривиальные названия, совпадающие с названиями карбоновых кислот. Названия кетонов в радикально-функциональной номенклатуре состоят из названий радикалов, соединенных с карбонильной группой, и слова "кетон". 2. Альдегиды и кетоны получают окислением первичных и вторичных спиртов. Восстановление ацилгалогенидов приводит к образованию альдегидов, тогда как взаимодействие ацилгалогенидов с диалкилкадмием дает кетоны. В результате озонолиза алкенов также образуются альдегиды и (или) кетоны. 3. Альдегиды и кетоны реагируют со спиртами, давая ацетали и кетали. Эта реакция используется для защиты карбонильной группы. Восстановление альдегидов и кетонов водородом или гидридами дает спирты. При восстановлении по Клеменсену или по Вольфу - Кижнеру образуются углеводороды. Альдегиды легко окисляются до карбоновых кислот. Для идентификации карбонильные соединения переводят в твердые производные, имеющие характеристические температуры плавления. При галогенировании альдегидов и кетонов галогены селективно направляются в -положение. При обработке метил кетонов иодом в щелочной среде образуется йодоформ Карбонильные соединения реагируют с цианидами, образуя нитрилы (которые можно гидролизовать до карбоновых кислот) и присоединяют реактивы Гриньяра, давая спирты. Построение нового углеродного скелета достигается с помощью альдольной конденсации и реакции Виттига. Ключевые слова (см. скан) Вопросы для развития навыков(см. скан) (см. скан) (см. скан) (см. скан) ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ
|
1 |
Оглавление
|