Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
СПЕКТРОСКОПИЯ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСАСпектроскопия ядерного магнитного резонанса (ЯМР) является наиболее мощным инструментом выяснения структуры органических веществ. В этом виде спектроскопии исследуемый образец помешают в магнитное поле и облучают радиочастотным электромагнитным (кликните для просмотра скана) (кликните для просмотра скана)
Рис. 11-13. Протоны в магнитном поле: а - в отсутствие магнитного поля; б - во внешнем магнитном поле; в - во внешнем магнитном поле после поглощения радиочастотного излучения (спины занимают более высокий энергетический уровень) излучением. Атомы водорода в разных частях молекулы поглощают излучение различной длины волны (частоты). В определенных условиях другие атомы также могут поглощать радиочастотное излучение, но мы ограничимся рассмотрением спектроскопии на атомах водорода как наиболее важного и распространенного вида спектроскопии ЯМР. Ядро атома водорода состоит из одного протона. Этот протон вращается вокруг своей оси и, как всякий вращающийся заряженный объект, представляет собой магнит. В отсутствие внешнего магнитного поля спины протонов ориентированы беспорядочно, но в магнитном поле возможны лишь две ориентации спина (рис. 11-13), которые называются спиновыми состояниями. Спиновые состояния, в которых магнитный момент (показан стрелкой) ориентирован по полю, имеют несколько меньшую энергию, чем спиновые состояния, в которых магнитный момент ориентирован против поля. Энергетическая разница двух спиновых состояний соответствует энергии фотона радиочастотного излучения. При воздействии этого излучения на исследуемый образец протоны переходят с более низкого энергетического уровня на более высокий, происходит поглощение энергии. Атомы водорода в молекуле находятся в различном химическом окружении. Одни входят в состав метильных групп, другие соединены с атомами кислорода или бензольным кольцом, третьи находятся рядом с двойными связями и т. д. Этой небольшой разницы в электронном окружении оказывается достаточно для изменения разности энергий между спиновыми состояниями и, следовательно, частоты поглощаемого излучения. Спектр ЯМР возникает как результат поглощения радиочастотного излучения веществом, находящимся в магнитном поле. Спектроскопия ЯМР позволяет различить атомы водорода в молекуле, находящиеся в различном химическом окружении. Спектры ЯМРПри сканировании частоты излучения при некоторых значениях частот наблюдается поглощение излучения атомами водорода в молекуле, конкретное значение частоты поглощения зависит от окружения атомов
Рис. 11-14. Типичный спектр ЯМР: а — спектр; б - интегральная кривая, дающая площадь пиков водорода. Зная, в какой области спектра находятся пики поглощения тех или иных типов атомов водорода, можно сдепать определенные заключения о структуре молекулы. На рис. 11-14 изображен типичный спектр ЯМР вещества, в котором имеется три типа атомов водорода. Положение сигналов в шкале химического сдвига 5 измеряется в миллионных долях (м. д.) от частоты радиоизлучения. Обычно все сигналы расположены в области Для интерпретации спектра и получения из него структурной информации имеют значение три типа спектральных параметров: 1) положение сигнала в 2) площадь сигнала (характеризует число атомов водорода данного типа); 3) мультиплетность (форма) сигнала (характеризует число близкорасположенных атомов водорода других типов). Познакомимся подробнее с этими параметрами на примере спектра хлорэтана (рис. 11-15). Прежде всего обратим внимание на положение сигналов в спектре, или, иначе говоря, на значения химических сдвигов. Сигнал а (протоны группы
Рис. 11-15. Спектр ЯМР хлорэтана (см. скан) свидетельствует о том, что эти атомы водорода не расположены рядом с электроотрицательным атомом, тогда как сдвиг сигнала б (протоны группы Затем проанализируем площадь пиков, которая пропорциональна числу атомов водорода данного типа. На рис. 11-15 относительные площади указаны цифрами в скобках. Они определены с помощью интегральной кривой, расположенной выше спектра. Площадь сигнала пропорциональна высоте "ступеньки" интегральной кривой. В обсуждаемом спектре отношение площадей сигналов составляет 2:3, что соответствует отношению числа метиленовых протонов И наконец, рассмотрим форму или структуру сигналов, которую обычно называют мультыппетностью. Сигнал метильной группы Таким образом, если в спектре имеется синглетный сигнал, это означает, что молекула вещества включает группу атомов водорода, по соседству с которой нет других водородных атомов. В спектре на рис. 11-15 сигнал мегильной группы представляет собой триплет. Это значит, что при соседнем углеродном атоме имеется два атома водорода.
Аналогично, сигнал метиленовой группы представляет собой квартет, потому что по соседству имеется три атома водорода.
Полезно научиться предсказывать ожидаемый спектр ЯМР, исходя из структурной формулы вещества. Освоив эту процедуру, легко перейти к решению обратной задачи — установлению структуры вещества по его спектру ЯМР. Ниже Вы увидите примеры предсказания спектров, исходя из структуры. Затем Вам будет предложено интерпретировать спектры с целью установления строения неизвестного вещества. Предсказание спектров ЯМР, исходя из структурной формулыДля предсказания спектров ЯМР проделайте следующие процедуры. 1. Изобразите полную структурную формулу вещества. 2. Обведите в рамку эквивалентные атомы водорода. Определите число атомов водорода каждого типа. 3. При помощи табл. 11-2 (или Вашей памяти) определите примерные значения химических сдвигов сигналов атомов водорода каждого типа. 4. На бланке спектра ЯМР, на который нанесена шкала химических сдвигов, стрелками отметьте положение каждого сигнала. 5. Определите мультиплетность каждого сигнала: а) определите число эквивалентных атомов водорода на соседних углеродных атомах; б) сосчитайте число линий в мультиплете, оно на единицу больше, чем число соседних водородных атомов; в) проделайте то же для каждой группы эквивалентных атомов водорода. 6. Изобразите спектр. Сигналы должны быть правильного размера (пункт 2), находиться на должном месте (пункт 3) и иметь мультиплетность в соответствии с пунктом 5. ПРИМЕРЫ(см. скан) (см. скан) (см. скан) (см. скан) (см. скан) (кликните для просмотра скана)
|
1 |
Оглавление
|