Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.1.3.3. ПРОГНОЗИРОВАНИЕ ВЛИЯНИЯ ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ ПРИ КВАЗИСТАТИЧЕСКОМ НАГРУЖЕНИИ НА Sc В СЛУЧАЕ ОТСУТСТВИЯ ДЕФОРМАЦИОННОЙ СУБСТРУКТУРЫ В МАТЕРИАЛЕВ соответствии с работой [135] сформулируем условие распространения микротрещины в зерне в случае совместного действия напряжений I и II рода. Предположим, что напряжения I рода
где
Рис. 2.18. Схема развития микротрещииы (1) в поле микронапряжений (2) Условие развития микротрещины, ориентированной перпендикулярно действию напряжений
или
где Условие (2.24) сводится к следующему: трещина развивается через потенциальные барьеры, созданные микронапряжениями, в том случае, если на всем протяжении ее развития интенсивность высвобождения упругой энергии превышает Согласно данным работы [218], для микротрещины в поле напряжений, представленном на рис.
где I — полудлина микротрещины. Обозначив
где
Зависимость
Рис. 2.19. Графики функций Поэтому нижнюю (кривая 2) и верхнюю (кривая 3) огибающие кривои 1 можно аппроксимировать зависимостью.
Картина развития микротрещин представляется следующим образом. При выполнении условия (2.7) микротрещины зарождаются, при этом происходит страгивание только тех микротрещин, вершины которых попали в зоны действия растягивающих микронапряжений. В зависимости от соотношения После преодоления микротрещиной ближайшего, барьера (область сжимающих микронапряжений) ее развитие будет происходить беспрепятственно, так как последующие барьеры являются менее мощными Для анализа влияния микронапряжений на
Решив (2.29) относительно
Параметр
При квазистатическом деформировании в области хаотического распределения дислокаций для напряжений течения а согласно работе [231] имеем
где Учитывая (2.31) и (2.32), а также используя аппроксимацию диаграммы деформирования материала степенной зависимостью
получим
Как известно, эффект Баушингера связан с наличием микронапряжений, возникающих в процессе пластического деформирования [121, 167]. Поэтому величину на основании данных об испытаниях образцов на растяжение и последующее сжатие. При этом микронапряжения, введенные. Допустив, что циклическое деформирование материала описывается обобщенной диаграммой циклического деформирования, и учитывая (2.33), параметр
где
Исследуем зависимость В то же время следует отметить, что зависимость Необходимо также отметить, что микронапряжения следует учитывать только в случае хаотического распределения дислокаций. При формировании какой-либо фрагментированной субструктуры плотность дислокаций внутри фрагмента (ячейки) падает, а на его границах растет. Это обстоятельство приводит к формированию микронапряжений на более высоком масштабном уровне, так как источником микронапряжений теперь выступают не отдельные дислокации, а границы фрагментов. В данном случае полупериод колебаний микронапряжений имеет порядок диаметра фрагмента. Учитывать влияние микронапряжений при расчете Страгивание зародышевых микротрещин в первую очередь будет происходить во фрагментах с растягивающими микронапряжениями. К моменту, когда микротрещина прорастет через границу фрагмента (субструктурный барьер), ее длина, а следовательно, и интенсивность высвобождения упругой энергии возрастут в 10—100 раз
|
1 |
Оглавление
|