Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.2.1.1. ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ ИДЕАЛИЗАЦИЯ ПРОЦЕССА ДЕФОРМИРОВАНИЯ ПРИ СВАРКЕВопрос о пространственной идеализации обусловлен тем, что в настоящее время практически могут быть решены только двумерные задачи, в которых предполагается, что поля температур, напряжений и деформаций Меняются только по рассматриваемому сечению тела и однородны в направлении, перпендикулярном этому сечению. В общем случае, строго говоря, процесс деформирования при сварке может быть описан только посредством решения трехмерных краевых задач, так как температура при многопроходной сварке неравномерно распределена как по поперечному относительно шва сечению сварного элемента, так и в направлении вдоль шва. Этот вопрос решается посредством принятия допущения об одновременном выполнении каждого прохода по всей длине шва. В этом случае поле температур и напряжений становится однородным вдоль шва и задача сводится к двумерной. Такое допущение, в общем, вполне приемлемо именно при определении остаточных (не временных) сварочных напряжений в связи со следующими обстоятельствами. Формирование ОСН начинается с момента приобретения разупрочненным материалом упругих свойств. Следовательно, процессы деформирования, происходящие в районе источника сварочного нагрева, не оказывают влияния на ОСН и этот район можно исключить из рассмотрения. В области за источником нагрева, где материал приобрел упругие свойства, градиент температур вдоль шва уже незначительный и НДС здесь можно считать близким к однородному. Вопрос, как схематизировать тепловложение при решении температурной задачи, в основном возникает по двум причинам. Во-первых, в силу того что решение термодеформационных задач проводится в двумерной. постановке при задании в температурной задаче тепловложения, равного погонной энергии при сварке, температурное состояние реального сварного узла и его двумерного аналога может существенно различаться. Во-вторых, при необходимости решать задачу по определению ОСН в узлах, сварка которых осуществляется с большим количеством проходов в шве. В этом случае невозможно проследить историю деформирования материала по всем проходам, так как такая задача требует огромного количества машинного времени. Поэтому возникает вопрос об объединении проходов при решении задачи и соответственно о схематизации тепловложения в них. В силу специфики сварки элементов толстолистовых конструкций вопрос об объединении проходов может быть решен достаточно просто на основании следующих соображений. Сварка элементов обычно выполняется по методу отжигающего валика, при котором последующий валик отжигает группу предыдущих [215]. При этой температура отжйгаемйх валиков может быть близка к температуре разупрочнения металла шва и до приобретений металлов достаточных упругих свойств она будет выравнйваться по этой группе валиков. В таком случае напряженное состояние, сформировавшееся после выполнения группы валиков, будет «забыто», а дальнейшее НДС сварного узла будет определяться «поведением» суперпрохода, образованного указанной группой валиков. Таким образом, при определении ОСН в сварных элементах можно рещить термодеформационную задачу, моделируя заполнение разделки суперпроходами. При таком моделировании При рёшении двумерйой термодеформационной задачи возникает первый из рассмотренных в этом подподразделе вопросов: как схематизировать тепловложение? Очевидно, что вкладывать в супёрпроход энёргию, равную сумме тепловложений каждого валика, принадлежащего суперпроходу, неправильно, так как такой подход не учитывает рассеяния тепла в процессе наложения валиков и приводит к значительному перегреву шва. На наш взгляд, в этом случае наиболее целесообразен подход, основанный на подборе такого тепловложения, при котором удовлетворяются следующие требования: суперпроход должен быть расплавлен, т. е. максимальная температура суперпрохода должна быть болыше, чем температуре плавления металла; время ввода тепла в суперпроход определяется соотношением размер зоны термического влияния суперпрохода, полученный при решении температурной задачи, должен быть равен реальному размеру зоны термического влияния, определенному по шлифу (для сварных соединений толстолистовых конструкций размер зоны термического влияния равен 3-5 мм), при соответствующем режиме сварки. Вопрос о временной идеализации процесса деформирования при сварке возникает при назначении временных интервалов между этапами решения деформационной задачи, так как определение ОСН осуществляется посредством прослеживания всей истории деформирования при сварке от этапа к этапу. Ответ на этот вопрос можно найти в самом методе решения термодеформационной задачи. Как указывалось в разделе 1.1, одно из допущений этого метода — условие простого нагружения на этапе в каждой точке рассматриваемой области, что позволяет определить размер временного интервала между этапами решения. В первом приближении можно принять, что простое нагружение реализуется, если в рассматриваемой области температура между этапами решения деформационной задачи можно проводить следующим образом. Предварительно решается температурная задача для каждого суперпрохода с достаточно малыми временными интервалами. Затем определяются искомые интервалы, которые соответствуют экстремумам термических циклов каждого КЭ зоны, где реализуется упругопластическое деформирование при выполнении очередного суперпрохода.
|
1 |
Оглавление
|