Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
4.3. Анализ механизмов поглощения продольных ультразвуковых волнВопросам поглощения и дисперсии ультразвука в биологических средах посвящен целый ряд обстоятельных обзорных работ. Среди них следует выделить работы Карстенсена [30], Данна и др. [53], Данна и О’Брайена [56], Фрая и Данна [75], Джонстона и др. [107], Уэллса [203] и Вудкока [207]. Однако основные теоретические положения, хотя они и не касались непосредственно биологических сред, были разработаны еще до появления этих обзоров (см., например, работы Маркхема и др. [143], Герцфельда и Литовица [97]). Заслуживает также упоминания монография Матесона [145]. Приведенный в данной главе анализ во многом базируется на указанной литературе и содержит лишь важнейшие положения теории. 4.3.1. ОДНОРОДНЫЕ ВОДОПОДОБНЫЕ СРЕДЫПоглощение энергии акустической волны приводит к ее необратимому преобразованию в тепло. Это происходит, если периодические изменения плотности среды не совпадают по фазе с колебаниями звукового давления. Применительно к «однородным» средам (например, в растворах макромолекул) известно, что механизмы, ответственные за подобное преобразование энергии, являются релаксационными. Следует отметить, что даже в случае самых простых сред нет полного понимания действия этих механизмов, хотя установлено, что они возникают в результате временного запаздывания в нарушении физического или химического равновесия под действием периодических изменений параметров волны. Можно считать, что в произвольный момент времени полная энергия волны распределена по различным формам энергии, к которым относятся энергия поступательного движения, колебательная энергия и энергия структурной перестройки молекул, колебательные и структурные состояния кристаллической решетки. С течением времени происходит перераспределение энергии, причем оно происходит с конечной скоростью, определяемой процессами обмена, присущими данной среде. Процессы обмена энергией сами по себе представляют определенные механизмы поглощения, тип и число которых могут существенно меняться при переходе от одной жидкости к другой. Общее выражение, характеризующее поглощение звука на частоте
где
Рис. 4.1. Поглощение (а) и дисперсия скорости звука (б) в случае одиночного релаксационного процесса с постоянной времени амплитудой релаксации), определяемая максимальным значением произведения длины волны на коэффициент поглощения или поглощения за период возрастающим отклонением по фазе от фазы волны. Поглощение растет до тех пор, пока на частотах, намного превышающих частоту релаксации, акустическая волна в силу малости временных интервалов уже перестает полностью нарушать термодинамическое равновесие среды, и наблюдается лишь незначительная передача энергии поступательного движения волны во внутренние степени свободы. Произведение длины волны на коэффициент поглощения достигает максимума при При анализе экспериментально полученных зависимостей поглощения от частоты необходимо учитывать целый ряд релаксационных процессов, вклад которых суммируется и добавляется к так называемому коэффициенту классического поглощения, вычисленному Стоксом и Кирхгофом более ста лет назад. Этот результат записывается в виде выражения
где Первый член в квадратных скобках характеризует вклады в поглощение, обусловленные тем, что молекулы среды перестраиваются в различные локальные структуры за конечное время, определяемое сдвиговой вязкостью. Член с теплопроводностью, который обычно пренебрежимо мал (за исключением расплавленных металлов), описывает потери энергии за счет возникновения теплового потока от областей с высоким звуковым давлением к областям с низким давлением. В случае многокомпонентных жидких смесей возникает, вообще говоря, еще один механизм поглощения, заключающийся в диффузии молекул различного типа вдоль градиентов концентрации, образующихся под влиянием звуковой волны. Однако в реальных случаях вклад этого механизма совершенно ничтожен и в уравнении (4.12) он не учитывается. Вообще все эти вклады описываются более точными релаксационными уравнениями, которые для частот, лежащих ниже соответствующих частот релаксации, сводятся к простым квадратичным зависимостям от частоты, характерным для классических механизмов. Поэтому механизмы поглощения часто, хотя и не совсем корректно, разделяются на «классические» и «релаксационные». Недавно на необоснованность такого разделения указывали Сегал и Гринлиф [190], исследовавшие частотные зависимости поглощения ультразвука в жидкостях и биологических тканях (см. разд. 4.5) в рамках модели, целиком базирующейся на анализе фазовых соотношений между акустическим давлением и колебаниями температуры при наличии релаксационного процесса того или иного типа. В уравнении (4.12) величины В случае достаточно сложных биологических сред и мягких тканей угловой коэффициент зависимости Разность между измеренным коэффициентом поглощения полагал, что величина Обычно процессы молекулярной релаксации разделяются на два типа — процессы термической и структурной релаксации. Подробное обсуждение причин такого разделения выходит за рамки нашего краткого рассмотрения. Следует отметить, что эти релаксационные механизмы характеризуются важными различиями, например, в отношении зависимости от температуры. Этот вопрос будет рассмотрен в дальнейшем. Структурные механизмы, рассмотренные Литовицем и Девисом [134], включают в себя внутримолекулярные перегруппировки и переходы между различными равновесными состояниями. Эти механизмы преобладают в ассоциированных жидкостях, таких как вода и спирты. Подобные жидкости состоят из полярных молекул и характеризуются кристаллической структурой ближнего порядка. Структурная релаксация возникает в ответ на изменения напряжения (или давления) в акустической волне. Процессы, обусловленные действием сдвиговой вязкости, являются характерными примерами структурной релаксации. Процессы термической релаксации, обсуждавшиеся Лэмбом [125], наблюдаются в слабо ассоциированных либо неассоциированных жидкостях типа бензола или дисульфида углерода, в которых тепловые флуктуации в волне нарушают внутримолекулярное (т. е. химическое) равновесие. Термическими процессами являются внутримолекулярные движения, связанные с поворотной изомерией, а также взаимодействия между поступательными и внутренними колебательными степенями свободы. В пределах релаксационной области акустического частотного спектра наблюдается также зависимость скорости звука от частоты. Как и в случае одиночного релаксационного процесса, дисперсия скорости характеризуется зависимостью, показанной на рис. 4.1,б. В однородных средах такая дисперсия скорости явно указывает на влияние дополнительной релаксации. В частотной области дисперсии относительное приращение скорости звука и максимум поглощения, обусловленный релаксационным механизмом, приближенно связаны соотношением
На практике максимальное относительное изменение скорости звука составляет менее 1%, поэтому для получения количественных данных требуется проводить очень точные измерения. Следует также отметить, что в области релаксационных частот зависимость с от
|
1 |
Оглавление
|