Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
В настоящее время воззрения Ньютона относительно пространства и времени кажутся нам очень схоластичными и стоящими в противоречии с его повторными утверждениями, что он хочет опираться только на факты. Ньютон говорит: Судя по этому, кажется, что Ньютона нисколько не заботил вопрос о том, откуда он берет свое абсолютное время и как он может отличить свое «неподвижное» абсолютное пространство от пространства, равномерно движущегося по отношению к «неподвижному». Это тем более удивительно, что в своей первой аксиоме Ньютон считает «состояние покоя» и «равномерное движение» равноправными. С другой стороны, Ньютон пытается выявить различие между абсолютным и относительным движением с помощью своего знаменитого «опыта с ведром»: вода наливается в ведро, которое висит на закрученной веревке и внезапно приводится этой веревкой во вращение вокруг своей оси. Вначале поверхность воды остается плоской, несмотря на то, что относительная скорость ведра и воды велика. Только по мере того, как вследствие трения вода приводится в движение, она поднимается у стенок вверх, и ее поверхность принимает параболоидальную форму. Относительное движение между ведром и водой теперь прекратилось, но возникло «абсолютное» движение воды в пространстве, а вместе с ним образовалась и вогнутость поверхности воды. На самом деле этот опыт показывает только, что вращающееся ведро является неподходящей системой отсчета для того, чтобы понять движение воды На практике мы полагаемся в этих вопросах на астрономов, которые дают нам в системе неподвижных звезд достаточно неподвижные оси и в средних солнечных сутках достаточно постоянную единицу времени. Но с теоретической точки зрения мы, к сожалению, приходим к тавтологии: правильной является та система отсчета, в которой закон инерции Галилея оказывается в достаточной степени справедливым для достаточно свободного тела. Таким образом, закон инерции низводится к чисто формальному определению; в качестве положительного неформального содержания закона остается только следующее утверждение: существуют системы отсчета, обладающие требуемым свойством. Согласно всему нашему опыту, такая система приближенно задается астрономическими определениями места и времени. В сущности, именно это имеют в виду, когда в основу механики кладут понятие инериальной системы, т.е. воображаемой системы, образованной траекториями тел, движущихся по инерции Теперь возникает вопрос: в какой мере определена эта идеальная система? Является ли такая система Преобразование (2.1) можно обобщить на случай поворота системы пространственных координат Это условие определяет произвольное ортогональное преобразование, которое можно охарактеризовать направляющими косинусами согласно следующей схеме: Эту схему можно читать как слева направо, так и сверху вниз. При этом, ввиду (2.2), Заменив в правой части (2.1) Тот факт, что штрихованная система Не так, однако, обстоит дело в области электродинамики и, в частности, в одном из ее отделов — в оптике. Уравнения Максвелла, которые управляют областью электродинамики, показывают, что процесс распространения света в вакууме со скоростью в зависимости от того, пользуемся ли мы штрихованной или нештрихованной системой отсчета. Здесь удобно изменить обозначение координат следующим образом: понимая под Независимость распространения света от системы отсчета требует Уравнение (2.2) определяло ортогональное преобразование в трехмерном пространстве, тогда как уравнение (2.9) относится к ортогональному преобразованию в четырехмерном пространстве, причем мнимость четвертой координаты не нарушает справедливости уравнений, аналогичных уравнениям (2.3), (2.4), (2.5). Соответствующее преобразованию (2.5) соотношение между Эта схема указывает на то, что при изменении системы отсчета изменяются не только пространственные координаты, но и координаты времени (в мнимой форме Значительно нагляднее общего преобразования частное преобразование Лоренца, которое мы получим, если оставим без изменения две пространственные координаты, например, Тогда в первом и втором горизонтальных и вертикальных рядах схемы (2.10) должны исчезнуть все Это следует из равенств таким образом, Если мы положим здесь то должны выбрать чтобы удовлетворить условию ортогональности Если еще ради сокращения ввести обозначения то схема (2.10) перейдет в Отсюда получаем следующие соотношения между двумя последними координатами (отныне мы будем применять для них первоначальные обозначения Из уравнений (2.11) и (2.12) следует, что Далее мы положим Согласно первому из уравнений (2.13), введенная нами величина Отсюда в пределе при Относительность времени в (2.14) и изменение масштаба пространственной координаты или Отсюда следует, что рассматриваемая точка, а следовательно, и штрихованная система координат, движется равномерно вдоль оси Тот факт, что при конечной скорости распространения Все многообразие физических следствий, вытекающих из преобразований Лоренца, может быть рассмотрено лишь в электродинамике. Здесь же мы еще рассмотрим только те изменения в понимании одной из важнейших механических величин — количества движения или импульса Мы назвали Однако это утверждение справедливо только с точки зрения преобразования Галилея, т.е. при условии, что время рассматривается как абсолютное. С точки зрения преобразований Лоренца радиус-вектор является четырехкомпонентной величиной, а именно четырехмерным вектором: Также и импульс — в дальнейшем мы будем обозначать его через так же, как и радиус-вектор (2.15), несомненно, является четырехмерным вектором. б) Величина этого расстояния, конечно, инвариантна по отношению к преобразованиям Лоренца. С точностью до множителя По введенной Минковским терминологии Выражение, стоящее перед скобками, целесообразно назвать массой движения (так как оно для Этот закон впервые был выведен Лоренцом в 1904 г. при весьма специальных предположениях (деформируемый электрон); вышеприведенный вывод из принципа относительности делает подобные специальные предположения излишними. Справедливость уравнения (2.20) подтверждена многочисленными точными опытами с быстрыми электронами; вместе с оптическими опытами, особенно с опытом Майкельсона, они являются тем фундаментом, на котором покоится теория относительности. Если мы в нашем изложении, следуя в обратной последовательности и исходя из принципа относительности, пришли к уравнению (2.20) очень формальным путем, то логически это допустимо и способствует краткости наших вводных пояснений. В §4 мы рассмотрим, какие изменения в применениях законов движения Ньютона вытекают из зависимости массы от скорости. Теперь, чтобы довести до конца рассмотрение вопроса о допустимых системах отсчета, хотя бы в виде кратких указаний, мы перейдем от специальной теории относительности, которую мы рассматривали до сих пор, к общей теории относительности (Эйнштейн, 1915 г.). В специальной теории относительности имеются правомерные системы отсчета, преобразующиеся друг в друга путем преобразований Лоренца, и неправомерные системы отсчета, например, системы, движущиеся ускоренно относительно правомерных. В общей же теории относительности допускаются всевозможные системы отсчета; преобразования между ними не должны, подобно (2.10), быть линейными или ортогональными, а могут быть заданы произвольными функциями В заключение скажем несколько слов о термине «теория относительности». Заслугой этой теории является не полная релятивизация пространства и времени, а доказательство независимости законов природы от выбора системы отсчета, т. е. доказательство инвариантности явлений природы по отношению ко всякому изменению точки зрения наблюдателя. Поэтому термин «теория инвариантности явлений природы» удачнее характеризовал бы эту теорию, чем обычный термин «общая теория относительности».
|
1 |
Оглавление
|