Главная > ОБЩИЙ КУРС ФИЗИКИ Том I МЕХАНИКА (Сивухин Д. В.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1. В качестве первого закона движения Ньютон принял закон инерции, высказанный в частной форме еще Галилеем. Согласно этому закону тело (материальная точка), не подверженное внешним воздействиям, либо находится в покое, либо движется прямолинейно и равномерно. Такое тело называется свободным, а его движение — свободным движением или движением по инерции.

Свободных тел, грубо говоря, не существует. Они являются физическими абстракциями. Однако можно поставить тело в такие условия, когда внешние воздействия на него по возможности устранены или практически компенсируют друг друга. Представив себе, что эти воздействия беспредельно уменьшаются, мы и приходим в пределе к представлению о свободном теле и свободном движении.

Здесь, однако, возникает следующая трудность. Как убедиться в том, что тело не подвержено внешним воздействиям? Об этом нельзя судить по отсутствию ускорений. Нужны какие-то другие независимые способы. Иначе закон инерции потерял бы всякое содержание. Вполне удовлетворительного ответа на этот вопрос не существует. В отсутствие внешних воздействий мы убеждаемся по отсутствию растягивающих пружин или веревок, которые тянут тело, по отсутствию тел, которые давят на него, т. д. Но тело может испытывать воздействия не только со стороны тел, с которыми оно соприкасается. Оно может подвергаться воздействиям также со стороны различного рода силовых полей, возбуждаемых другими телами. Поэтому вопрос сводится к тому, как убедиться в том, что воздействиям со стороны силовых полей тело не подвергается.

Все силы, встречающиеся в природе, известные в настоящее время, сводятся к силам гравитационного притяжения, электромагнитным силам, сильным и слабым взаимодействиям. Сильные и слабые взаимодействия проявляются в атомных ядрах и в мире элементарных частиц. Они действуют на малых расстояниях: сильные на расстояниях порядка $10^{-13} \mathrm{cм}$, слабые — на расстояниях порядка $10^{-16} \mathrm{cм}$. В макромире, который только и изучает классическая механика, от сильных и слабых взаимодействий можно отвлечься.

Электромагнитные и гравитационные силы, напротив, являются силами дальнодействующими. С расстоянием они убывают медленно. Если это статические силы, то они убывают обратно пропорционально квадрату расстояния. Если же они переменные (электромагнитные волны), то убывание происходит еще медленнее — обратно пропорционально расстоянию. Только благодаря электромагнитным волнам (свет, радиоизлучение, рентгеновское излучение), исходящим от планет, звезд, пульсаров, галактик и пр., мы и знаем о существовании этих небесных объектов. Поэтому нет оснований утверждать, что удаленные источники не возбуждают заметных электромагнитных и гравитационных полей в рассматриваемой нами области пространства. Однако в отсутствие электромагнитных полей всегда можно убедиться, так как они действуют по-разному на положительные и отрицательные заряды, из которых состоят тела. Под действием таких полей возникло бы некоторое разделение положительных и отрицательных зарядов, которое можно было бы обнаружить на опыте. Заряженный шарик, помещенный в одну и ту же точку пространства, двигался бы по-разному в зависимости от того, заряжен он положительно или отрицательно. Bсе имеющиеся факты не противоречат утверждению, что удаленные тела Вселенной не возбуждают сколько-нибудь заметных статических электромагнитных полей в малых областях пространства (порядка размеров Солнечной системы или Галактики).

О гравитационных полях этого нельзя сказать с той же уверенностью. Но если бы такие поля и существовали, то с ними можно было бы не считаться. Дело в том, что всем телам, независимо от их состава, одно и то же гравитационное поле сообщает в точности одинаковое ускорение. Статическое гравитационное поле удаленных тел Вселенной в малых областях пространства можно считать практически однородным. Можно ввести систему отсчета, свободно падающую в таком однородном гравитационном поле. На явлениях, происходящих в такой системе отсчета, наличие этого однородного гравитационного поля никак не сказывается. Здесь все происходит в точности так же, как в кабине космического корабля, свободно движущегося в космическом пространстве. В такой кабине космонавты не чувствуют наличия поля тяготения (невесомость). Переменные же гравитационные поля (гравитационные волны) слишком слабы. Попытки их экспериментального обнаружения стали предприниматься лишь в последнее время. Однако из-за малости ожидаемых эффектов гравитационные волны еще не обнаружены экспериментально. Ограничимся здесь этими замечаниями, откладывая более подробный разбор вопроса до гл. IX.
2. В кинематике выбор системы отсчета не был существенным. Все системы отсчета кинематически эквивалентны. Не так обстоит дело в динамике. Уже закон инерции с особой остротой ставит вопрос о выборе системы отсчета. Одно и то же движение выглядит поразному в разных системах отсчета. Если в какой-либо системе отсчета тело движется прямолинейно и равномерно, то в системе отсчета, движущейся относительно первой ускоренно, этого уже не будет. Отсюда следует, что закон инерции не может быть справедлив во всех системах отсчета. Без указания системы отсчета он просто теряет смысл. Классическая механика постулирует, что существует система отсчета, в которой все свободные тела движутся прямолинейно и равномерно. Такая система называется инерциальной системой отсчета. Содержание закона инерции, в сущности, сводится к утверждению, что существует по крайней мере одна инерциальная система отсчета.

Это утверждение является обобщением громадной совокупности опытных фактов. Точно так же, только опытным путем, можно установить, какие системы отсчета являются инерциальными, а какие — не инерциальными. Допустим, например, что речь идет о движении звезд и других астрономических объектов в доступной нашему наблюдению части Вселенной. Тогда можно утверждать, что система отсчета, в которой Земля принимается неподвижной (такую систему мы будем называть земной), не будет инерциальной. Действительно, в такой системе звезды совершают суточные вращения на небесном своде. Так как расстояния до звезд очень велики, то при этом развиваются очень большие центростремительные ускорения, направленные к Земле. Между тем каждая звезда, ввиду ее громадной удаленности от других небесных тел, практически является свободной. Свободное движение звезды в земной системе отсчета совершается по кругу, а не по прямой линии. Оно не подчиняется закону инерции, а потому земная система отсчета не будет инерциальной. Надо испытать на инерциальность другие системы отсчета. Попробуем взять гелиоцентрическую систему отсчета, иначе называемую системой Коперника (по имени польского астронома Николая Коперника (1473-1543)). Это есть координатная система, начало которой помещено в центре Солнца (точнее, в центре масс Солнечной системы), а координатные оси являются прямыми, направленными на три удаленные звезды и не лежащими в одной плоскости. Материальными объектами, с помощью которых реализуются эти оси, являются световые лучи, приходящие от звезд в Солнечную систему. Благодаря относительному движению звезд углы между координатными осями в системе Коперника не остаются постоянными, а медленно изменяются с течением времени. Однако ввиду колоссальности расстояний до звезд изменения направлений координатных осей происходят настолько медленно, что, как правило, их можно не принимать во внимание. Система Коперника практически является инерциальной системой, по крайней мере при изучении движений, происходящих в масштабе нашей планетной системы, а также всякой другой системы, размеры которой малы по сравнению с расстоянием до тех трех звезд, которые в системе Коперника выбраны в качестве опорных. Это доказывается опытами, большинство из которых являются косвенными. Некоторые прямые опыты (маятник Фуко и пр.) будут рассмотрены в гл. IX. Эти же опыты доказывают неинерциальность земной системы отсчета.
3. Неинерциальность земной системы отсчета объясняется тем, что Земля вращается вокруг собственной оси и вокруг Солнца, т. е. движется ускоренно относительно системы Коперника. Впрочем, оба эти вращения происходят медленно*). Поэтому по отношению к громадному кругу явлений земная система отсчета ведет себя практически как инерииальная система. Обычные, сравнительно грубые наблюдения и опыты над движением тел не позволяют обнаружить отступления от инерциальности земной системы отсчета. Для этого требуются более точные и тонкие опыты. Вот почему при установлении основных законов динамики можно начать с изучения движения тел относительно Земли, отвлекаясь от ее вращения, т. е. принять Землю за приблизительно инерциальную систему отсчета.
4. Если три звезды, используемые в системе Коперника для фиксирования направлений координатных осей, принадлежат нашей Галактике, то, разумеется, такая система может играть роль инерциальной или, точнее, приблизительно инерциальной системы отсчета только тогда, когда речь идет о движении объектов, малых по сравнению с размерами Галактики, например, о движении Солнечной системы или ее частей. Но при рассмотрении движений всей Галактики или нескольких галактик это будет уже не так. Тогда для построения (приблизительно) инерциальной системы отсчета можно использовать какие-либо другие четыре астрономических объекта, расстояния между которыми весьма велики по сравнению с размерами области пространства, внутри которой совершается движение рассматриваемых тел. Центр одного из этих астрономических объектов можно принять за начало координат, а остальные три объекта использовались для фиксирования направлений координатных осей.

При изучении движения тел мы будем сначала предполагать, что движение отнесено к инерциальной системе отсчета. После этого в
*) В каком смысле следует понимать медленность вращения выяснится в гл. IX.

гл. IX мы изучим, как изменится форма законов движения, когда оно рассматривается относительно неинерциальных систем отсчета.

1
Оглавление
email@scask.ru