Главная > ОБЩИЙ КУРС ФИЗИКИ Том I МЕХАНИКА (Сивухин Д. В.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

По мысли Ньютона, вес тел на Земле является проявлением силы гравитационного притяжения между рассматриваемым телом и Землей*). Для проверки этой идеи Ньютон сравнил ускорение свободного падения тел у поверхности Земли с ускорением Луны на орбите, по которой она движется относительно Земли.

Допустим, что вещество внутри земного шара распределено сферически симметрично, т. е. его плотность зависит только от расстояния до центра Земли. В этом случае, как было показано в § 55, Земля создает во внешнем пространстве такое же гравитационное поле, что и материальная точка той же массы, помещенная в центре Земли. Если верна гипотеза Ньютона, то ускорение свободного падения gабс  на расстоянии r от центра Земли должно определяться формулой
gабс =GMr2,

где M — масса Земли. Той же формулой должно определяться ускорение Луны aЛ  на ее орбите:
aJI=GMR2,

где R — радиус лунной орбиты. Таким образом,
gабс =aJI(Rr)2.

Если aЛ  известно, то с помощью этой формулы можно вычислить ускорение свободного падения gабс  на поверхности Земли. Это и было сделано Ньютоном.

Ускорение Луны aЛ  можно вычислить, зная R и период обращения Луны по ее орбите T (относительно звезд). Эти величины равны соответственно R=3,844105км,T=27,32 суток. Используя их, находим
aI=4π2T2R=0,2723 cm/c2.

Средний радиус земного шара r, определяемый из условия, чтобы величина 4/3πr3 равнялась объему Земли, равен r=6371 км. Подставляя эти данные в формулу (60.3), получим gабс =991,4 cm/c2. Эта величина близка к экспериментальным значениям: на полюсе gабс =983,2cм/c2, на экваторе gабс =981,4 cm/c2. Близкое совпадение может рассматриваться как подтверждение гипотезы Ньютона.
*) Сила веса, о которой идет речь в этом утверждении, строго говоря, равна силе гравитационного притяжения только в том случае, когда взвешивание производится на весах, покоящихся или не имеющих ускорения относительно инерциальной системы отсчета(см. § 66)

Небольшое расхождение обусловлено, главным образом, тем, что мы не учли движение самой Земли. Формула (60.4) дает ускорение Луны относительно Земли ( aЛ)отн , тогда как в формулу (60.3) должно входить ускорениеЛуны относительно инерциальной системы отсчета (aЛ )абс . Согласно формуле (59.4) эти ускорения связаны между собой соотношением
(aЛ)отн =(1+mM)(aЛ )абс ,

где m — масса Луны. Следовательно, вычисленное выше значение gабс  надо уменьшить в (1+m/M) раз. Отношение массы Луны к массе Земли составляет m/M=1/81. Введя эту поправку, получим gабс =979,3cм/c2, что значительно лучше согласуется с опытом. Оставшееся небольшое расхождение можно объяснить отступлениями формы Земли от шаровой.

Заметим, что с помощью формулы (6.1) можно вычислить массу Земли. Для этого надо знать числовое значение гравитационной постоянной G.
ЗАДАЧИ
1. Показать, что если высота над земной поверхностью мала по сравнению с радиусом Земли R, то зависимость ускорения свободного падения на Земле от высоты определяется приближенной формулой
gg0(12hR)g0(10,00314h),

где g0 — значение g на земной поверхности. Предполагается, что высота h измеряется в километрах.
2. Для вычисления средней плотности Земли δ Эйри ( 18011892 ) предложил и осуществил следующий метод. Измеряются ускорения свободного падения g0 на поверхности Земли и g в шахте глубиной h. Принимается, что плотность Земли в поверхностном слое толщиной h однородна и равна δ0=2,5 г/ cm3. (Это предположение плохо соответствует действительности.) В опытах Эйри было gg0=0,000052g0,R/h=16000 ( R радиус Земли). Пользуясь этими данными, вычислить среднюю плотность Земли. (Обратите внимание, что g вблизи поверхности Земли возрастает с глубиной! Чем это объясняется?)
 Ответ. δ3δ02gg0g0Rh6,5Γ/cm3
3. Допустим, что в земном шаре вдоль оси вращения просверлен канал от полюса к полюсу. Как будет двигаться материальная точка, помещенная в такой канал без начальной скорости? Плотность вещества земного шара ρ считать однородной.

От в т. Точка будет совершать гармонические колебания с круговой частотой, определяемой соотношением ω2=4/3πρG=g/R, где R радиус земного шара, g — ускорение свободного падения на поверхности Земли. Период этих колебаний T=2πR/g84 мин. Интересно отметить, что период колебаний зависит только от плотности шара, но не зависит от его размеров.

Определить начальную скорость метеоритов vo, если максимальное прицельное расстояние, при котором они еще падают на Землю, равно l ( l>R, где R — радиус земного шара). Получить числовой ответ при l=2R. (См. примечание к задаче §58.)
Ответ. v=R2gRl2R2. При l=2Rv=23gR6,5 km/c.
5. Вычислить массу Земли, используя параметры орбиты советского искусственного спутника «Космос-380». Период обращения спутника (относительно звезд) T=102,2 мин, расстояние до поверхности Земли в перигее 210 км, а апогее 1548 км. Землю считать шаром с радиусом 6371 км.

Ответ. M=4π2Ga2T261027 г, где a половина длины большой оси эллиптической орбиты спутника.

1
Оглавление
email@scask.ru