Главная > Дифференциальные уравнения
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ПРЕДИСЛОВИЕ

Предлагаемая вниманию читателя книга является учебным пособием для студентов-заочников физико-математических факультетов пединститутов по разделу «Дифференциальные уравнения» курса «Математический анализ». Она входит в серию пособий по математическому анализу, выходящую под общей редакцией профессора Н. Я. Виленкина (в настоящее время в этой серии вышли книги: «Введение в анализ» (1983 г.), «Дифференциальное исчисление» (1984 г.), «Интегральное исчисление» (1979 г.), «Ряды» (1982 г.), «Мощность, метрика, интеграл» (1980 г.), «Элементы функционального анализа в задачах» (1978 г.), и готовится к печати пособие «Теория аналитических функций»). Книга написана в соответствии с действующей программой, причем в конце включен небольшой раздел, посвященный уравнениям в частных производных, который предусматривается проектом новой программы курса математического анализа.

Книга состоит из введения и трех глав. Первая глава посвящена дифференциальным уравнениям первого порядка, решаемым в квадратурах, и методам понижения порядка для дифференциальных уравнений высшего порядка. При этом мы предпочли начать не с общего класса уравнений в полных дифференциалах, а с метода разделения переменных как более наглядного и требующего меньшего числа предварительных сведений.

Одной из важнейших целей раздела «Дифференциальные уравнения» авторы считают обучение студента умению решать физические и геометрические задачи с помощью таких уравнений. Этот вопрос детально рассматривается в первой главе. Общие методы составления дифференциальных уравнений иллюстрируются на многих конкретных примерах.

Во второй главе рассматриваются общие вопросы, относящиеся к дифференциальным уравнениям, — вопросы существования и единственности решения, особые точки и решения и т. д. Относительно доказательства теоремы существования и единственности решения дифференциальных уравнений первого порядка читатель отсылается к книге «Математический анализ. Мощность, метрика, интеграл» (Н. Я. Виленкин, М. Б. Балк, В. А. Петров. М., 1980), где оно приведено в общем контексте метода последовательных приближений. Даны формулировки обобщений этой теоремы на системы дифференциальных уравнений первого порядка и на уравнения высшего порядка. Однако соответствующие доказательства не проводятся, поскольку они не содержат новых идей и в то же время затруднительны технически.

Третья глава посвящена линейным дифференциальным уравнениям высшего порядка. В изложении общей теории таких уравнений мы широко используем понятие линейного дифференциального оператора. Это понятие значительно облегчает вывод многих теорем и является одним из важнейших в современной математике, а потому заслуживает особого внимания. При доказательствах теорем мы опираемся на известные студентам сведения из линейной алгебры, что позволяет не формулировать заново соответствующие понятия для частного случая пространства решений. Методы, связанные с дифференциальными, операторами, используются и при решении линейных дифференциальных уравнений с постоянными коэффициентами.

Каждой параграф пособия снабжен вопросами для самопроверки и упражнениями. Нумерация теорем, лемм и. примеров сплошная на протяжении каждого пункта.

Авторы выражают глубокую благодарность за тщательное рецензирование, способствовавшее улучшению рукописи, профессору М. И. Граеву и кандидату физ.-мат. наук Л. М. Молчановой.

Авторы просят присылать отзывы и замечания по адресу: Москва, 129846, 3-й проезд Марьиной рощи, д. 41, издательство «Просвещение», редакция математики.

1
Оглавление
email@scask.ru