Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7.5. Современная ситуацияКак отмечалось, отклонения от корреляции для некоторых растворителей с низкой диэлектрической проницаемостью нельзя объяснить с точки зрения электростатической сольватации. Причина этих отклонений другая. Наиболее разумное объяснение состоит в том, что в растворителях с очень слабыми кислыми или основными свойствами эталонные соединения, используемые для построения шкалы, будут преимущественно подвергаться самоассоциации и тем самым имитировать сольватацию. Эти эффекты, по мнению авторов, обусловливают вторую концептуальную трудность в применении эмпирических параметров растворителя. Точно так же в растворителях с низкой координирующей способностью исходные соединения для реакции, кинетику которой изучают, могут оставаться ассоциированными, что приводит к усложнению механизма реакции. Необходимо еще раз подчеркнуть, что для получения физически осмысленных корреляционных диаграмм следует использовать константы скорости, относящиеся к определенной стадии реакции. Имеется множество отклонений, причины которых неясны, что еще раз свидетельствует об очень сложной природе взаимодействий растворенных веществ с растворителем и о том, что в любой ситуации такое взаимодействие может оказаться особым случаем. Поэтому использование эмпирических параметров часто может оказаться напрасным трудом. Так что попытки найти общий подход к эффектам растворителя с помощью лишь двух параметров должны свидетельствовать о недопонимании проблемы. Как будет вкратце обсуждаться в следующей главе, влияние заместителей можно рассматривать как модель влияния растворителей. Среди эффектов заместителей также имеются особо сложные случаи, которые трудно поддаются исследованию. Прежде всего речь идет о сложностях, связанных с заместителями в орто-положении, так называемом орто-эффекте, включающем несколько различных эффектов (см. разд. 8.3). Однако это ничто по сравнению со сложностями, встречающимися при рассмотрении эффектов растворителя. Одним из важных факторов являются стерические явления; долгое время считалось, что они играют главную роль в особенностях влияния орто-заместителей. Точно так же существуют различные стерические требования и в отношении донорно-акцепторных взаимодействий, например, для больших молекул ГМФТА. Многие ионы металлов, такие, как Линейные зависимости в шкале ДЧ и/или АЧ наблюдаются в тех случаях, когда нуклеофильная и/или электрофильная сольватация настолько сильна (и, кроме того, не затруднена стерически), что становится преобладающим механизмом взаимодействия. В остальных случаях могут превалировать другие, более тонкие механизмы сольватации, которые в настоящее время не поддаются объяснению. Например, среди растворителей, влияющих чаще всего непредсказуемо, особенно зарекомендовал себя диоксан, так что Тафт и сотр. [146] в своем обширном исследовании зависимости эффектов заместителей от растворителя пришли к тому, что разделили все растворители на обычные, слабопротонные, диоксан и трифторуксусную кислоту (очень сильный акцептор). Цитируя работу Тафта, следует отметить, что зависимость эффектов заместителей от растворителя указывает на существование вторичных (т.е. неизвестных) механизмов сольватации. Этот вывод подтверждается и тем, что корреляции с величинами ДЧ и/или АЧ являются скорее исключениями, чем правилами (ср. с интерпретацией отклонений от линейных графиков Гаммета в разд. 8.4). Таким образом, в настоящее время, пользуясь донорными и акцепторными числами (или эквивалентными им величинами) и иногда принимая во внимание диэлектрические проницаемости, можно часто получить довольно хорошее представление об изменении реакционной способности при переходе от одного растворителя к другому. С точки зрения механизма реакции изучение влияния растворителя на скорость означает, как правило, поиск ответа на вопрос, какие донорно-акцепторные взаимодействия происходят при образовании активированного комплекса или интермедйата. Зная это, можно судить о распределении заряда, а следовательно, и о его характере: повышение скорости с увеличением донорной (акцепторной) силы растворителя означает образование или локализацию положительного (отрицательного) заряда. И наоборот, уменьшение скорости с ростом донорной (акцепторной) силы растворителя означает, что положительный (отрицательный) заряд исчезает или дел окал изуется. В следующем разделе будут приведены некоторые поучительные примеры, показывающие практическую пригодность шкалы ДЧ и АЧ. Но сначала довольно полная компиляция этих параметров представлена в табл. 7-2 для наиболее распространенных чистых растворителей. Чтобы расширить шкалу, мы дополнили таблицу данными
и получены с помощью анализа линейной регрессии для 13 растворителей, отмеченных темными кружками на рис. 7-3. Аналогичным образом величины
(см. скан) (см. скан) (см. скан) Кроме возможности дополнительно включать другие растворители, практическую важность представляет отличие соответствующих шкал. Наиболее приемлемыми будут те значения, для которых наблюдается хорошее согласование величин АЧ (ДЧ) с величинами Все приведенные выше рассуждения были ограничены случаями чистых растворителей. Остановимся кратко на смесях растворителей. По линейным функциям чистых растворителей невозможно предсказать значения ДЧ и АЧ в их смесях. По существу, взаимодействие растворитель — растворитель делает каждую смесь новым растворителем, имеющим свойства каждого из компонентов. Но, даже если удается найти донорные и акцепторные числа для смешанных растворителей [42, 88], применимость их довольно ограниченна. По-видимому, эффективные донорные и акцепторные числа смесей растворителей не являются постоянными, а представляют собой функции дополняющих друг друга свойств растворенного вещества благодаря явлению, называемому «предпочтительной» или «селективной» сольватацией (см. обзоры [41, 42, 129]).
|
1 |
Оглавление
|