Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5. ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ ТЕМПЕРАТУРЫКак хорошо известно, скорость химической реакции обычно резко возрастает с увеличением температуры. Эмпирическое правило, предложенное еще Вант-Гоффрм, гласит, что скорость реакции возрастает в 2—3 раза при повышении температуры на 10 °С. Поскольку в уравнении скорости член, отвечающий концентрации, практически нечувствителен к изменению температуры, особенно для реакций в растворах, температурная зависимость скорости должна сводиться к температурной зависимости константы скорости. Иногда эту зависимость характеризуют температурным коэффициентом 5.1. Уравнение АррениусаСуществует несколько уравнений, пригодных для количественного описания температурной зависимости констант скоростей элементарных реакций. Выведем сначала известное уравнение Аррениуса. Влияние температуры на элементарную реакцию первого порядка
интерпретируется в терминах первичного эндотермического равновесия между А и активированной частицей А, которая затем превращается в продукт:
В частном случае, когда
Подстрочный индекс
которое логарифмируют и дифференцируют по температуре (считая, что
Применяя изохору Вант-Гоффа, т.е. соотношение между константой равновесия и температурой, получают уравнение
где
или, в экспоненциальной форме,
где А — константа, называемая частотным фактором, предэкспоненциальным множителем или аррениусовским множителем. Если построить зависимость А: от Хотя для объяснения температурной зависимости скорости реакции разработано несколько более совершенных теорий (см., например, [73, 92]), при выяснении механизмов реакций первостепенный интерес представляют аррениусовский график и его физическая интерпретация. Прежде всего важно выяснить, линейный это график или нелинейный. Далее, определенную информацию о рассматриваемой реакции могут дать аррениусовские параметры
|
1 |
Оглавление
|