Главная > Лазеры сверхкоротких световых импульсов
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

4. АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД

4.1. Принцип действия

В отличие от обычного лазер с активной синхронизацией мод содержит амплитудный или фазовый модулятор, размещаемый вблизи одного из зеркал резонатора (рис. 4.1).

Рис. 4.1. Схема лазера с активной синхронизацией мод.

Частота модуляции, осуществляемой модулятором, соответствует межмодовой частоте аксиальных мод Амплитудная модуляция осуществляется акустооптическим модулятором или электрооптическим модулятором, в то время как фаговая модуляция достигается только электрооптическим модулятором

4.1.1. Амплитудная модуляция

Изменение во времени коэффициента пропускания амплитудного модулятора возбуждает в каждой моде боковые составляющие, совпадающие по частотам с соседними аксиальными модами. Установление процесса синхронизации мод можно объяснить следующим образом: при возбуждении с помощью накачки лазерной среды порог генерации достигается сначала на частоте ближайшей к максимуму линии усиления. Поле этой моды модулируется амплитудным модулятором с частотой в результате чего возникают боковые составляющие с частотами имеющие определенные амплитуды и фазы.

Так как частоты боковых составляющих соответствуют собственным частотам резонатора и лежат внутри линии усиления лазерного перехода, то поля боковых составляющих также

усиливаются и модулируются в свою очередь с частотой модуляции . В результате возникают боковые составляющие с частотами Этот процесс продолжается до тех пор, пока все аксиальные моды внутри области генерации не оказываются взаимно связанными, т. е. синхронизованными.

Рис. 4.2. Локализация во времени оптического импульса относительно модуляционного цикла при активной синхронизации мод. а — амплитудная модуляция; б — фазовая модуляция.

Установление процесса синхронизации мод можно проследить и путем рассмотрения его развития во времени. При этом надо учесть, что период модуляции равен времени обхода светом резонатора и. По этой причине циркулирующее в резонаторе лазерное излучение проходит через модулятор периодически при одном и том же значении фазы модуляционного цикла, соответствующей минимуму вносимых в резонатор потерь (рис. 4.2, а). Соответственно излучение концентрируется в коротком импульсе, т. е. в том интервале времени, в котором малы модуляционные потери.

4.1.2. Фазовая модуляция

Механизмы синхронизации мод при активной модуляции фазы и амплитуды схожи. Временная модуляция фазы вызывает появление у каждой моды, лежащей внутри линии усиления, боковых составляющих, фазы которых взаимно синхронизованы. На временном языке это означает, что энергия излучения концентрируется в промежутках времени, соответствующих малому изменению фазы . В модуляционном цикле это имеет место около двух экстремальных точек, в которых (см. рис. 4.2, б). Вне этих промежутков времени напряженность поля подвержена быстрой временной модуляции. Соответственно имеет место сдвиг частоты излучения,

пропорциональный Частотные сдвиги после каждого прохода резонатора суммируются, в результате чего частота излучения, соответствующая этой части цикла модуляции, выходит за пределы линии усиления активной среды. Существование двух экстремальных значений фазы обусловливает неопределенность положения генерируемого импульса на временной шкале, так как вероятность его возникновения в обеих точках одинакова.

4.1.3. Однородно и неоднородно уширенные лазерные переходы

Механизмы активной синхронизации мод лазеров с однородно и неоднородно уширенными линиями усиления сильно различаются.

Лазеры с неоднородно уширенной линией при достаточно большой накачке генерирует большое число продольных мод. В отсутствие модулирующего сигнала фазы мод распределены по законам статистики. Синхронизация мод достигается относительно просто, так как для нее достаточно возникновения слабого сигнала на боковой частоте. Этот сигнал служит затравочным для соседней моды и последовательно усиливается. Впервые активную синхронизацию мод Не-Ne-лазера с помощью акустооптического модулятора потерь экспериментально осуществили Харрис и Тарг [4.1]. Они получили периодическую последовательность импульсов длительностью около 2,5 нс. Детальный расчет активной синхронизации мод лазеров с неоднородно уширенной линией усиления был сделан Харрисом и Макдафом [4.2]. Основываясь на спектральном описании, они решили систему уравнений, учитывающую взаимодействие между модами, в предположении что накачка отдельных мод осуществляется независимо.

Механизм синхронизации мод лазеров с однородно уширенной линией существенно иной. Его анализ предпочтительно проводить, пользуясь временным представлением. В этом представлении синхронизация мод состоит в образовании короткого импульса света, циркулирующего в резонаторе. Особый интерес представляют процессы, протекающие при непрерывной стационарной накачке, которые сводятся к следующему. После некоторого числа проходов импульсом резонатора действия усилителя и модулятора взаимно компенсируются. Это значит, что импульс после каждого прохода резонатора сам себя воспроизводит и больше не меняет своих параметров. Это имеет место по той причине, что потери в модуляторе и на излучение через зеркала полностью компенсируются усилением в активной среде, в то время как процесс укорочения импульса в модуляторе прекращается вследствие конечного значения спектральной ширины линии усиления или какого-либо частотно-селективного элемента в резонаторе. Как следствие лазер излучает

непрерывную последовательность коротких импульсов с неизменными параметрами.

Ниже мы ограничимся рассмотрением лазеров с однородно уширенной линией, к которым относятся широко распространенные лазеры на АИГ с неодимом и -лазеры высокого давления. Экспериментально впервые активная синхронизация мод лазера на АИГ с помощью амплитудного модулятора была осуществлена Ди Доменико и сотр. [4.3] и с помощью фазового модулятора — Остерингом и Форстером [4.4].

<< Предыдущий параграф Следующий параграф >>
Оглавление