Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3.8.2. Генетические алгоритмыИдея генетических алгоритмов была предложена Дж. Холландом в 70-х годах XX в. [41], а их интенсивное развитие и практическая реализация для численных оптимизационных расчетов были инициированы Д. Гольдбергом [41]. Эти алгоритмы имитируют процессы наследования свойств живыми организмами и генерируют последовательности новых векторов w, содержащие оптимизированные переменные: Отдельные компоненты вектора На начальной стадии выполнения генетического алгоритма инициализируется определенная популяция хромосом (векторов и»). Она формируется случайным образом, хотя применяются также и самонаводящиеся способы (если их можно определить заранее). Размер популяции, как правило, пропорционален количеству оптимизируемых параметров. Слишком малая популяция хромосом приводит к замыканию в неглубоких локальных минимумах. Слишком большое их количество чрезмерно удлиняет вычислительную процедуру и также может не привести к точке глобального минимума. При случайном выборе векторов Селекция хромосом для спаривания (необходимого для создания нового поколения) может основываться на различных принципах. Одним из наиболее распространенных считается принцип элитарности, в соответствии с которым наиболее приспособленные хромосомы сохраняются, а наихудшие отбраковываются и заменяются вновь созданным потомством, полученным в результате скрещивания пар родителей. На этапе скрещивания подбираются такие пары хромосом, потомство которых может быть включено в популяцию путем селекции. Существует огромное количество методов спаривания, от полностью случайного (как правило, среди наиболее приспособленных хромосом), через взвешенно-случайное спаривание и вплоть до так называемой турнирной системы. В последнем случае случайным образом отбирается несколько хромосом, среди которых определяются наиболее приспособленные (с наименьшим значением целевой функции). Из победителей последовательно проведенных турниров формируются пары для скрещивания. При взвешенно-случайной системе в процессе отбора учитывается информация о текущем значении функции приспособленности. Отбор может происходить по принципу “рулетки”, при этом площадь сегмента колеса рулетки, сопоставленного конкретной хромосоме, пропорциональна величине ее относительной функции приспособленности. Ситуация, типичная для такого отбора, иллюстрируется на рис. 3.9. Полная площадь круга соответствует сумме значений функций приспособленности всех хромосом данной популяции.
Рис. 3.9. Схема “рулетки”, используемая при выборе родителей для будущего поколения. Площадь отдельных сегментов пропорциональна значениям соответствующих функций приспособленности Каждый выделенный сегмент отвечает конкретной хромосоме. Наиболее приспособленным особям отводятся большие сегменты колеса рулетки, увеличивающие их шансы попадания в переходную популяцию.
Рис. 3.10. Иллюстрация операции скрещивания, применяемой в генетическом алгоритме Процесс скрещивания основан на рассечении пары хромосом на две части (рис. 3.10) с последующим обменом этих частей в хромосомах родителей. Место рассечения также выбирается случайным образом. В ситуации, показанной на рис. 3.10, после скрещивания хромосомы 1 (фрагменты Последняя генетическая операция — это мутация, состоящая в замене значений отдельных битов (при двоичном кодировании) на противоположные. При кодировании натуральными десятичными цифрами мутация заключается в замене значения какого-либо элемента вектора другим, случайно выбранным допустимым значением. Мутация обеспечивает защиту как от слишком раннего завершения алгоритма (в случае выравнивания значений всех хромосом и целевой функции), так и от представления в какой-либо конкретной позиции всех хромосом одного и того же значения. Однако необходимо иметь в виду, что случайные мутации приводят к повреждению уже частично приспособленных векторов. Обычно мутации подвергается не более 1-5% бит всей популяции хромосом. Как и при выполнении большинства генетических операций, элемент, подвергаемый мутации, отбирается случайным образом. На рис. 3.11 представлены схема формирования переходной популяции и проводимые после него операции скрещивания и мутации, приводящие к образованию популяции потомков. Отметим, что в этих операциях не обязательно участвуют все хромосомы, входящие в переходную популяцию. Исследованиями доказано [41], что каждое последующее поколение, сформированное после выполнения селекции, скрещивания и мутации, имеет статистически лучшие средние показатели приспособленности (меньшие значения целевой функции). Типичная динамика изменения среднего по популяции и минимального (т.е. соответствующего наиболее приспособленной хромосоме) значения целевой функции для последовательных поколений генетического процесса представлена на рис. 3.12. В качестве окончательного решения принимается наиболее приспособленная хромосома, имеющая минимальное значение целевой функции. Генетический процесс завершается либо в момент генерации удовлетворяющего нас решения, либо при выполнении максимально допустимого количества итераций. При реализации генетического процесса отслеживается, как правило, не только минимальное значение целевой функции, но и среднее значение по всей популяции хромосом, а также их вариации. Решение об остановке алгоритма может приниматься и в случае отсутствия прогресса минимизации, определяемого по изменениям названных характеристик. Хорошие результаты обучения приносит объединение алгоритмов глобальной оптимизации с детерминированными методами. На первом этапе обучения сети (кликните для просмотра скана)
Рис. 3.12. Типичная динамика среднего применяется выбранный алгоритм глобальной оптимизации, а после достижения целевой функцией определенного уровня включается детерминированная оптимизация с использованием какого-либо локального алгоритма (наискорейшего спуска, переменной метрики, Левенберга-Марквардта или сопряженных градиентов).
|
1 |
Оглавление
|