Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Раздел 1. ВВЕДЕНИЕ1.1. Биологические основы функционирования нейронаТематика искусственных нейронных сетей относится к междисциплинарной сфере знаний, связанных с биокибернетикой, электроникой, прикладной математикой, статистикой, автоматикой и даже с медициной [16,46,51, 77,113,152,182]. Искусственные нейронные сети возникли на основе знаний о функционировании нервной системы живых существ. Они представляют собой попытку использования процессов, происходящих в нервных системах, для выработки новых технологических решений. Нервная клетка, сокращенно называемая нейроном, является основным элементом нервной системы. Изучение механизмов функционирования отдельных нейронов и их взаимодействия принципиально важно для познания протекающих в нервной системе процессов поиска, передачи и обработки информации. С этой точки зрения представляется необходимым построить и изучить модель биологического нейрона. Как и у любой другой клетки, у нейрона имеется тело со стандартным набором органелл, называемое сомой, внутри которого располагается ядро [152]. Из сомы нейрона выходят многочисленные отростки, играющие ключевую роль в его взаимодействии с другими нервными клетками. Можно выделить два типа отростков: многочисленные тонкие, густо ветвящиеся дендриты и более толстый, расщепляющийся на конце аксон (рис. 1.1). Входные сигналы поступают в клетку через синапсы, тогда как выходной сигнал отводится аксоном через его многочисленные нервные окончания, называемые колатералами. Колатералы контактируют с сомой и дендритами других нейронов, образуя очередные синапсы. Очевидно, что синапсы, подключающие к клетке выходы других нейронов, могут находиться как на дендритах, так и непосредственно на теле клетки. Передача сигналов внутри нервной системы - это очень сложный электрохимический процесс. С большим упрощением можно считать, что передача нервного импульса между двумя клетками основана на выделении особых химических субстанций, называемых нейромедиаторами, которые формируются под влиянием поступающих от синапсов раздражителей. Эти субстанции воздействуют на клеточную мембрану, вызывая изменение ее энергетического потенциала, причем величина этого изменения пропорциональна количеству нейромедиатора, попадающего на мембрану.
Рис. 1.1. Упрощенная структура биологической нервной клетки Синапсы отличаются друг от друга размерами и возможностями концентрации нейромедиатора вблизи своей оболочки. По этой причине импульсы одинаковой величины, поступающие на входы нервной клетки через различные синапсы, могут возбуждать ее в разной степени. Мерой возбуждения клетки считается уровень поляризации ее мембраны, зависящий от суммарного количества нейромедиатора, выделенного на всех синапсах. Из сказанного следует, что каждому входу клетки можно сопоставить численные коэффициенты (веса), пропорциональные количеству нейромедиатора, однократно выделяемого на соответствующем синапсе. В математической модели нейрона входные сигналы должны умножаться на эти коэффициенты для того, чтобы корректно учитывать влияние каждого сигнала на состояние нервной клетки. Синапсические веса должны быть натуральными числами, принимающими как положительные, так и отрицательные значения. В первом случае синапс оказывает возбуждающее, а во втором - тормозящее действие, препятствующее возбуждению клетки другими сигналами. Таким образом, действие возбуждающего синапса может моделироваться положительным значением синапсического веса, а действие тормозящего синапса - отрицательным значением. В результате поступления входных импульсов на конкретные синапсы и высвобождения соответствующих количеств нейромедиатора происходит определенное электрическое возбуждение нервной клетки. Если отклонение от состояния электрического равновесия невелико либо если баланс возбуждений и торможений является отрицательным, клетка самостоятельно возвращается в исходное состояние, и на ее выходе какие-либо изменения не регистрируются. В этом случае считается, что уровень возбуждения клетки был ниже порога ее срабатывания. Если же сумма возбуждений и торможений превысила порог активации клетки, значение выходного сигнала начинает лавинообразно нарастать, принимая характерный вид нервного импульса (рис. 1.2), пересылаемого аксоном на другие нейроны, подключенные к данной клетке. Величина этого сигнала не зависит от степени превышения порога.
Рис. 1.2. Типичная форма нервного импульса Клетка действует по принципу “все или ничего”. После выполнения своей функции нейромедиатор удаляется. Механизм удаления заключается либо во всасывании этой субстанции клеткой, либо в ее разложении, либо в удалении за пределы синапса. Одновременно с генерацией нервного импульса в клетке запускается процесс рефракции. Он проявляется как стремительное возрастание порога активации клетки до значения “плюс бесконечность”, в результате чего сразу после генерации импульса нейрон теряет способность вырабатывать очередной сигнал даже при сильном возбуждении. Такое состояние сохраняется в течение времени Количество взаимодействующих друг с другом нервных клеток чрезвычайно велико. Считается, что человеческий мозг содержит около могут интерпретироваться аналогично содержимому локальной памяти процессора. Громадное количество нейронов и межнейронных связей (до 1000 входов в каждый нейрон) приводит к тому, что ошибка в срабатывании отдельного нейрона остается незаметной в общей массе взаимодействующих клеток. Нейронная сеть проявляет высокую устойчивость к помехам — это “стабильная” сеть, в которой отдельные сбои не оказывают существенного влияния на результаты ее функционирования. Таково главное отличие нейронных систем от обычных электронных систем, созданных человеком. Следует подчеркнуть, что ни одна современная технология не позволяет построить искусственную нейронную сеть, близкую по масштабам к нейронной сети мозга. Однако изучение и копирование биологических нервных систем позволяют надеяться на создание нового поколения электронных устройств, имеющих аналогичные характеристики. Другая важная особенность нервных систем - высокая скорость их функционирования, несмотря на относительно длительный цикл срабатывания каждой отдельной клетки, измеряемый в миллисекундах и показанный на рис. 1.2. Она достигается благодаря параллельной обработке информации в мозге огромным количеством нейронов, соединенных многочисленными межнейронными связями. Такие операции, как распознавание образов и звуков либо принятие решений, выполняются человеческим мозгом за промежутки времени, измеряемые миллисекундами. Достижение такого результата при использовании полупроводниковой технологии VLSI все еще выходит за границы современных технических возможностей, хотя цикл срабатывания отдельных исполнительных элементов СБИС является достаточно коротким и имеет порядок
|
1 |
Оглавление
|