Главная > Нейронные сети для обработки информации
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Раздел 1. ВВЕДЕНИЕ

1.1. Биологические основы функционирования нейрона

Тематика искусственных нейронных сетей относится к междисциплинарной сфере знаний, связанных с биокибернетикой, электроникой, прикладной математикой, статистикой, автоматикой и даже с медициной [16,46,51, 77,113,152,182]. Искусственные нейронные сети возникли на основе знаний о функционировании нервной системы живых существ. Они представляют собой попытку использования процессов, происходящих в нервных системах, для выработки новых технологических решений.

Нервная клетка, сокращенно называемая нейроном, является основным элементом нервной системы. Изучение механизмов функционирования отдельных нейронов и их взаимодействия принципиально важно для познания протекающих в нервной системе процессов поиска, передачи и обработки информации. С этой точки зрения представляется необходимым построить и изучить модель биологического нейрона.

Как и у любой другой клетки, у нейрона имеется тело со стандартным набором органелл, называемое сомой, внутри которого располагается ядро [152]. Из сомы нейрона выходят многочисленные отростки, играющие ключевую роль в его взаимодействии с другими нервными клетками. Можно выделить два типа отростков: многочисленные тонкие, густо ветвящиеся дендриты и более толстый, расщепляющийся на конце аксон (рис. 1.1).

Входные сигналы поступают в клетку через синапсы, тогда как выходной сигнал отводится аксоном через его многочисленные нервные окончания, называемые колатералами. Колатералы контактируют с сомой и дендритами других нейронов, образуя очередные синапсы. Очевидно, что синапсы, подключающие к клетке выходы других нейронов, могут находиться как на дендритах, так и непосредственно на теле клетки.

Передача сигналов внутри нервной системы - это очень сложный электрохимический процесс. С большим упрощением можно считать, что передача нервного импульса между двумя клетками основана на выделении особых химических субстанций, называемых нейромедиаторами, которые формируются под

влиянием поступающих от синапсов раздражителей. Эти субстанции воздействуют на клеточную мембрану, вызывая изменение ее энергетического потенциала, причем величина этого изменения пропорциональна количеству нейромедиатора, попадающего на мембрану.

Рис. 1.1. Упрощенная структура биологической нервной клетки

Синапсы отличаются друг от друга размерами и возможностями концентрации нейромедиатора вблизи своей оболочки. По этой причине импульсы одинаковой величины, поступающие на входы нервной клетки через различные синапсы, могут возбуждать ее в разной степени. Мерой возбуждения клетки считается уровень поляризации ее мембраны, зависящий от суммарного количества нейромедиатора, выделенного на всех синапсах.

Из сказанного следует, что каждому входу клетки можно сопоставить численные коэффициенты (веса), пропорциональные количеству нейромедиатора, однократно выделяемого на соответствующем синапсе. В математической модели нейрона входные сигналы должны умножаться на эти коэффициенты для того, чтобы корректно учитывать влияние каждого сигнала на состояние нервной клетки. Синапсические веса должны быть натуральными числами, принимающими как положительные, так и отрицательные значения. В первом случае синапс оказывает возбуждающее, а во втором - тормозящее действие, препятствующее возбуждению клетки другими сигналами. Таким образом, действие возбуждающего синапса может моделироваться положительным значением синапсического веса, а действие тормозящего синапса - отрицательным значением.

В результате поступления входных импульсов на конкретные синапсы и высвобождения соответствующих количеств нейромедиатора происходит определенное электрическое возбуждение нервной клетки. Если отклонение от

состояния электрического равновесия невелико либо если баланс возбуждений и торможений является отрицательным, клетка самостоятельно возвращается в исходное состояние, и на ее выходе какие-либо изменения не регистрируются. В этом случае считается, что уровень возбуждения клетки был ниже порога ее срабатывания. Если же сумма возбуждений и торможений превысила порог активации клетки, значение выходного сигнала начинает лавинообразно нарастать, принимая характерный вид нервного импульса (рис. 1.2), пересылаемого аксоном на другие нейроны, подключенные к данной клетке. Величина этого сигнала не зависит от степени превышения порога.

Рис. 1.2. Типичная форма нервного импульса

Клетка действует по принципу “все или ничего”. После выполнения своей функции нейромедиатор удаляется. Механизм удаления заключается либо во всасывании этой субстанции клеткой, либо в ее разложении, либо в удалении за пределы синапса.

Одновременно с генерацией нервного импульса в клетке запускается процесс рефракции. Он проявляется как стремительное возрастание порога активации клетки до значения “плюс бесконечность”, в результате чего сразу после генерации импульса нейрон теряет способность вырабатывать очередной сигнал даже при сильном возбуждении. Такое состояние сохраняется в течение времени называемого периодом абсолютной рефракции. По окончании этого срока наступает период относительной рефракции за который порог срабатывания возвращается к первоначальному значению. В это время клетку можно активировать, но только с приложением более сильных возбуждений. В естественных процессах, как правило, выполняется отношение

Количество взаимодействующих друг с другом нервных клеток чрезвычайно велико. Считается, что человеческий мозг содержит около нейронов [152], каждый из которых выполняет относительно примитивные функции суммирования весовых коэффициентов входных сигналов и сравнения полученной суммы С пороговым значением. Каждый нейрон имеет свои веса и свое пороговое значение. Они определяются местонахождением нейрона и решаемой им задачей и

могут интерпретироваться аналогично содержимому локальной памяти процессора.

Громадное количество нейронов и межнейронных связей (до 1000 входов в каждый нейрон) приводит к тому, что ошибка в срабатывании отдельного нейрона остается незаметной в общей массе взаимодействующих клеток. Нейронная сеть проявляет высокую устойчивость к помехам — это “стабильная” сеть, в которой отдельные сбои не оказывают существенного влияния на результаты ее функционирования. Таково главное отличие нейронных систем от обычных электронных систем, созданных человеком. Следует подчеркнуть, что ни одна современная технология не позволяет построить искусственную нейронную сеть, близкую по масштабам к нейронной сети мозга. Однако изучение и копирование биологических нервных систем позволяют надеяться на создание нового поколения электронных устройств, имеющих аналогичные характеристики.

Другая важная особенность нервных систем - высокая скорость их функционирования, несмотря на относительно длительный цикл срабатывания каждой отдельной клетки, измеряемый в миллисекундах и показанный на рис. 1.2. Она достигается благодаря параллельной обработке информации в мозге огромным количеством нейронов, соединенных многочисленными межнейронными связями. Такие операции, как распознавание образов и звуков либо принятие решений, выполняются человеческим мозгом за промежутки времени, измеряемые миллисекундами. Достижение такого результата при использовании полупроводниковой технологии VLSI все еще выходит за границы современных технических возможностей, хотя цикл срабатывания отдельных исполнительных элементов СБИС является достаточно коротким и имеет порядок . Если удастся, взяв за образец нервную систему, создать устройство с высокой степенью параллельности выполнения независимых операций, то скорость его функционирования может быть существенно увеличена и приближена к уровню, наблюдаемому в процессах обработки информации биологическими объектами.

1
Оглавление
email@scask.ru