Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Раздел 1. ВВЕДЕНИЕ1.1. Биологические основы функционирования нейронаТематика искусственных нейронных сетей относится к междисциплинарной сфере знаний, связанных с биокибернетикой, электроникой, прикладной математикой, статистикой, автоматикой и даже с медициной [16,46,51, 77,113,152,182]. Искусственные нейронные сети возникли на основе знаний о функционировании нервной системы живых существ. Они представляют собой попытку использования процессов, происходящих в нервных системах, для выработки новых технологических решений. Нервная клетка, сокращенно называемая нейроном, является основным элементом нервной системы. Изучение механизмов функционирования отдельных нейронов и их взаимодействия принципиально важно для познания протекающих в нервной системе процессов поиска, передачи и обработки информации. С этой точки зрения представляется необходимым построить и изучить модель биологического нейрона. Как и у любой другой клетки, у нейрона имеется тело со стандартным набором органелл, называемое сомой, внутри которого располагается ядро [152]. Из сомы нейрона выходят многочисленные отростки, играющие ключевую роль в его взаимодействии с другими нервными клетками. Можно выделить два типа отростков: многочисленные тонкие, густо ветвящиеся дендриты и более толстый, расщепляющийся на конце аксон (рис. 1.1). Входные сигналы поступают в клетку через синапсы, тогда как выходной сигнал отводится аксоном через его многочисленные нервные окончания, называемые колатералами. Колатералы контактируют с сомой и дендритами других нейронов, образуя очередные синапсы. Очевидно, что синапсы, подключающие к клетке выходы других нейронов, могут находиться как на дендритах, так и непосредственно на теле клетки. Передача сигналов внутри нервной системы - это очень сложный электрохимический процесс. С большим упрощением можно считать, что передача нервного импульса между двумя клетками основана на выделении особых химических субстанций, называемых нейромедиаторами, которые формируются под влиянием поступающих от синапсов раздражителей. Эти субстанции воздействуют на клеточную мембрану, вызывая изменение ее энергетического потенциала, причем величина этого изменения пропорциональна количеству нейромедиатора, попадающего на мембрану.
Рис. 1.1. Упрощенная структура биологической нервной клетки Синапсы отличаются друг от друга размерами и возможностями концентрации нейромедиатора вблизи своей оболочки. По этой причине импульсы одинаковой величины, поступающие на входы нервной клетки через различные синапсы, могут возбуждать ее в разной степени. Мерой возбуждения клетки считается уровень поляризации ее мембраны, зависящий от суммарного количества нейромедиатора, выделенного на всех синапсах. Из сказанного следует, что каждому входу клетки можно сопоставить численные коэффициенты (веса), пропорциональные количеству нейромедиатора, однократно выделяемого на соответствующем синапсе. В математической модели нейрона входные сигналы должны умножаться на эти коэффициенты для того, чтобы корректно учитывать влияние каждого сигнала на состояние нервной клетки. Синапсические веса должны быть натуральными числами, принимающими как положительные, так и отрицательные значения. В первом случае синапс оказывает возбуждающее, а во втором - тормозящее действие, препятствующее возбуждению клетки другими сигналами. Таким образом, действие возбуждающего синапса может моделироваться положительным значением синапсического веса, а действие тормозящего синапса - отрицательным значением. В результате поступления входных импульсов на конкретные синапсы и высвобождения соответствующих количеств нейромедиатора происходит определенное электрическое возбуждение нервной клетки. Если отклонение от состояния электрического равновесия невелико либо если баланс возбуждений и торможений является отрицательным, клетка самостоятельно возвращается в исходное состояние, и на ее выходе какие-либо изменения не регистрируются. В этом случае считается, что уровень возбуждения клетки был ниже порога ее срабатывания. Если же сумма возбуждений и торможений превысила порог активации клетки, значение выходного сигнала начинает лавинообразно нарастать, принимая характерный вид нервного импульса (рис. 1.2), пересылаемого аксоном на другие нейроны, подключенные к данной клетке. Величина этого сигнала не зависит от степени превышения порога.
Рис. 1.2. Типичная форма нервного импульса Клетка действует по принципу “все или ничего”. После выполнения своей функции нейромедиатор удаляется. Механизм удаления заключается либо во всасывании этой субстанции клеткой, либо в ее разложении, либо в удалении за пределы синапса. Одновременно с генерацией нервного импульса в клетке запускается процесс рефракции. Он проявляется как стремительное возрастание порога активации клетки до значения “плюс бесконечность”, в результате чего сразу после генерации импульса нейрон теряет способность вырабатывать очередной сигнал даже при сильном возбуждении. Такое состояние сохраняется в течение времени называемого периодом абсолютной рефракции. По окончании этого срока наступает период относительной рефракции за который порог срабатывания возвращается к первоначальному значению. В это время клетку можно активировать, но только с приложением более сильных возбуждений. В естественных процессах, как правило, выполняется отношение Количество взаимодействующих друг с другом нервных клеток чрезвычайно велико. Считается, что человеческий мозг содержит около нейронов [152], каждый из которых выполняет относительно примитивные функции суммирования весовых коэффициентов входных сигналов и сравнения полученной суммы С пороговым значением. Каждый нейрон имеет свои веса и свое пороговое значение. Они определяются местонахождением нейрона и решаемой им задачей и могут интерпретироваться аналогично содержимому локальной памяти процессора. Громадное количество нейронов и межнейронных связей (до 1000 входов в каждый нейрон) приводит к тому, что ошибка в срабатывании отдельного нейрона остается незаметной в общей массе взаимодействующих клеток. Нейронная сеть проявляет высокую устойчивость к помехам — это “стабильная” сеть, в которой отдельные сбои не оказывают существенного влияния на результаты ее функционирования. Таково главное отличие нейронных систем от обычных электронных систем, созданных человеком. Следует подчеркнуть, что ни одна современная технология не позволяет построить искусственную нейронную сеть, близкую по масштабам к нейронной сети мозга. Однако изучение и копирование биологических нервных систем позволяют надеяться на создание нового поколения электронных устройств, имеющих аналогичные характеристики. Другая важная особенность нервных систем - высокая скорость их функционирования, несмотря на относительно длительный цикл срабатывания каждой отдельной клетки, измеряемый в миллисекундах и показанный на рис. 1.2. Она достигается благодаря параллельной обработке информации в мозге огромным количеством нейронов, соединенных многочисленными межнейронными связями. Такие операции, как распознавание образов и звуков либо принятие решений, выполняются человеческим мозгом за промежутки времени, измеряемые миллисекундами. Достижение такого результата при использовании полупроводниковой технологии VLSI все еще выходит за границы современных технических возможностей, хотя цикл срабатывания отдельных исполнительных элементов СБИС является достаточно коротким и имеет порядок . Если удастся, взяв за образец нервную систему, создать устройство с высокой степенью параллельности выполнения независимых операций, то скорость его функционирования может быть существенно увеличена и приближена к уровню, наблюдаемому в процессах обработки информации биологическими объектами.
|
1 |
Оглавление
|