Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7.3. Сеть ХеммингаПредложенная Р. Липпманном в работе [91] сеть Хемминга - это трехслойная рекуррентная структура, которую можно считать развитием сети Хопфилда. Она позиционируется как специализированное гетероассоциативное запоминающее устройство. Основная идея функционирования этой сети состоит в минимизации расстояния Хемминга между тестовым вектором, подаваемым на вход сети, и векторами обучающих выборок, закодированными в структуре сети. На рис. 7.4 представлена обобщенная схема сети Хемминга. Первый ее слой имеет однонаправленное распространение сигналов от входа к выходу и фиксированные значения весов. Второй слой, MAXNET, состоит из нейронов, связанных обратными связями по принципу “каждый с каждым”, при этом в отличие от структуры Хопфилда существует ненулевая связь входа нейрона со своим собственным выходом. Веса нейронов в слое MAXNET также постоянны. Разные нейроны связаны отрицательной (подавляющей) обратной связью с весом В процессе функционирования сети можно выделить три фазы. В первой из них на ее вход подается
Рис. 7.4. Структура сети Хемминга Во второй фазе инициировавшие MAXNET сигналы удаляются, и из сформированного ими начального состояния запускается итерационный процесс внутри этого слоя. Итерационный процесс завершается в момент, когда все нейроны, кроме одного (победителя с выходным сигналом, равным 1), перейдут в нулевое состояние. Нейрон-победитель с ненулевым выходным сигналом становится представителем класса данных, к которому принадлежит входной вектор. В третьей фазе этот же нейрон посредством весов, связывающих его с нейронами выходного слоя, формирует на выходе сети отклик в виде вектора у, соответствующий возбуждающему вектору х. Сеть Хемминга считается гетероассоциативным запоминающим устройством с парой связанных между собой векторов Хемминга между фактически предъявленным входным вектором х и каждым из Подбор весов сети Хемминга оказывается чрезвычайно простым. Веса первого слоя соответствуют очередным векторам образов поэтому
для
В случае нейронов слоя MAXNET, функционирующих в режиме WTA, веса сети должны усиливать собственный сигнал нейрона и ослаблять остальные. Для достижения этого эффекта принимается
а также
для
где Нейроны различных слоев сети Хемминга функционируют по-разному. Нейроны первого слоя рассчитывают расстояния Хемминга между поданными на вход сети вектором
где Сигналы
при начальном значении
Итерационный процесс (7.23) завершается в момент, когда состояние нейронов стабилизируется и активность продолжает проявлять только один нейрон, тогда как остальные пребывают в нулевом состоянии. Активный нейрон становится победителем и через веса Важным достоинством сети Хемминга считается небольшое количество взвешенных связей между нейронами. Например, 100-входовая сеть Хопфилда, кодирующая 10 различных векторных классов, должна содержать 10000 взвешенных связей с подбираемыми значениями весов. При построении аналогичной сети Хемминга количество взвешенных связей уменьшается до 1100, из которых 1000 весов находятся в первом слое и 100 - в слое MAXNET. Выходной слой в этом случае не учитывается, поскольку сеть Хемминга, аналогичная сети Хопфилда, является ассоциативной. В результате многочисленных экспериментов доказано, что рекуррентная сеть Хемминга дает лучшие результаты, чем сеть Хопфилда, особенно в ситуациях, когда взаимосвязанные векторы х и у являются случайными. В частности, реализованная в программе Mathlab сеть Хемминга, протестированная на 10 цифрах, изображенных на рис. 7.3, позволила почти безошибочно распознать все представленные зашумленные образы. Достигнутая эффективность распознавания зашумленных образов составила 100%. На рис. 7.5 и 7.6 изображены искаженные образы цифр эталонам с наименьшим расстоянием Хемминга
Рис. 7.5. Тестовые (сверху) и распознанные сетью Хемминга (снизу) образы цифр при обработке первой группы искаженных входных данных
Рис. 7.6. Тестовые (сверху) и распознанные сетью Хемминга (снизу) образы цифр при обработке второй группы искаженных входных данных Единственная проблема, связанная с сетью Хемминга, проявляется в случае, когда зашумленные образы находятся на одинаковом (в смысле Хемминга) расстоянии от двух или более эталонов. В этом случае выбор сетью Хемминга одного из этих эталонов становится совершенно случайным.
|
1 |
Оглавление
|