Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 7. Нелинейные акустоэлектрониые устройства на поверхностных волнахНа процесс усиления звука нелинейность оказывает вредное влияние, приводя к уменьшению коэффициента усиления и вследствие этого к ограничению динамического диапазона усилителей. Но нелинейные [явления могут быть обращены и на пользу в устройствах обработки сигналов, использующих различные взаимодействия акустических волн с электрическими и механическими полями и между собой. Вследствие своей высокой эффективности в большинстве устройств используется токовый механизм нелинейности, обусловленный взаимодействием звуковой волны с электронами. В настоящее время [70] наиболее существенным применением не только нелинейных акустоэлектронных явлений, но и взаимодействий звука с электронами вообще являются котольверы на ПАВ, или устройства свертки и корреляции, принцип действия которых основан на встречном взаимодействии двух поверхностных волн (рис. 12.18).
Рис. 12.18. Акустоэлектронный конвольвер на базе слоистой системы с воздушным зазором: 1 — пьезоэлектрик, 2 — полупроводник, 3 — разделительные прокладки, 4 — заземленный электрод. Конструкция типичного конвольвера, использующего токовый механизм нелинейности полупроводника, в сущности не отличается от конструкции усилителя ПАВ на основе слоистых структур (ср. рис. 12.16). Если на входы 1 и 2 такого устройства подаются амплитудно-модулированные электрические сигналы с частотами заполнения
где L — расстояние между входами 1 и 2. Сопровождающие эти волны неоднородные электростатические поля
Из (7.1) ясно, что вследствие симметрии задачи вклад в нелинейный ток
где С — комплексная константа, учитывающая эффективность нелинейного взаимодействия и электрический импеданс слоистой системы. Суммарный потенциал со всех точек поверхности полупроводника, который в дальнейшем будем обозначать через U, очевидно, зависит от фазовых соотношений между потенциалами в отдельных точках. В случае пространственной зависимости вида (7.2) наибольший электрический сигнал может быть зарегистрирован с помощью обычного встречно-штыревого преобразователя с периодом
Детальная теория устройств описанного типа, позволяющая рассчитать константу С в зависимости от различных факторов, была развита в работах [90, 91]. Если пространственная протяженность модулирующих импульсов вправо, то выражение (7.3) можно переписать в виде
где
Вычисление корреляционных функций, особенно функций автокорреляции, соответствующих Простейшими устройствами, осуществляющими операцию (7.5), являются пассивные фильтры различных типов, в том числе и фильтры на ПАВ, описанные в §§ 3 и 4. В таких фильтрах роль функции Полные вносимые потери П конвольвера, учитывающие как эффективность нелинейного преобразования, так и потери на возбуждение и детектирование ПАВ, очевидно, зависят от уровня опорного сигнала
где
где Одним из недостатков, препятствующих использованию конвольверов в системах помехоустойчивого радиоприема, является необходимость подачи опорного сигнала одновременно с принимаемым, время прихода которого, вообще говоря, неизвестно. В принципе эта трудность может быть преодолена за счет использования многоканального приемного устройства, каждый из каналов которого рассчитан на определенное время прихода. Но совершенно ясно, что такой вариант далеко не лучший. Более существенного прогресса здесь удается достичь, используя возможность запоминания акустических сигналов на центрах захвата электронов в полупроводнике [94, 95]. Для пояснения принципа запоминания обратимся снова к выражению (7.1), описывающему взаимодействие двух встречных ПАВ, но будем теперь интересоваться током на разностной частоте Запомненный сигнал может быть считан в виде ПАВ при подаче на центральный электрод электрического импульса на удвоенной частоте. При этом в обе стороны от центрального электрода будут распространяться две поверхностные волны удвоенной частоты. Запоминание акустических сигналов может осуществляться не только в результате встречного взаимодеиствия двух ПАВ [95, 96], но и при взаимодействии одной поверхностной волны частоты со с электрическим полем частоты со, подаваемым на центральный электрод [94]. В этом случае на поверхности полупроводника возникает постоянный пространственный заряд, которому соответствует волновой вектор
которое после замены
При подаче считывающей ПАВ на другой ВШП, производя замену
Заметим, что если в качестве считывающих сигналов подавать короткие, дельтаобразные импульсы, то выражение (7.7) будет описывать первоначально запомненный сигнал, Конвольвер с памятью, как и любой пассивный фильтр, может обрабатывать принимаемые сигналы независимо от времени их прихода (но, разумеется, в пределах длительности памяти). К сожалению, эффективность таких устройств, использующих два последовательных акта нелинейного взаимодействия, или четырехволновые процессы, пока еще довольно мала. В лучших образцах Среди других возможных применений нелинейных устройств на ПАВ следует назвать системы считывания оптических изображений, которые могут быть реализованы на основе конвольверов [70, 97, 981. Принцип действия таких устройств легко пояснить на их простейшей разновидности, базирующейся на уже знакомой нам конструкции слоистого полупроводникового конвольвера (рис. 12.18). Предположим, что на поверхность полупроводниковой пластины с помощью объектива спроецировано одномерное оптическое изображение, модулирующее равновесную плотность свободных носителей по закону
Пусть теперь один из сигналов, например
т. е. на временной развертке со скоростью v будет отображаться оптическое изображение Разумеется, кроме использования в радиофизических системах, нелинейные акустоэлектронные устройства могут применяться и в чисто физических исследованиях свойств кристаллов, особенно полупроводников, например для измерения плотности поверхностных состояний [91] или времен релаксации поверхностного заряда на ловушках [95, 96]. В последнем случае измерение зависимости амплитуды сигнала памяти от времени задержки считывающего импульса, которая, вообще говоря, отличается от экспоненциальной, позволяет оценить энергетическую структуру поверхностных состояний полупроводника.
|
1 |
Оглавление
|