Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1. До сих пор при рассмотрении скорости распространения волн мы предполагали, что соблюдается принцип суперпозиции и отсутствует дисперсия. При несоблюдении принципа суперпозиции и наличии дисперсии вопрос о скорости распространения волн становится очень сложным. Ниже предполагается, что принцип суперпозиции соблюдается, но имеется дисперсия. Сначала рассмотрим плоские волны, распространяющиеся в одном направлении, принимаемом за направление оси где Для выяснения смысла скорости распространения рассмотрим уравнение Әто есть уравнение плоскости, перпендикулярной к оси Таким образом, Если бы среда не обладала дисперсией, то говорить о какой-либо другой скорости распространения волны не было бы необходимости. Действительно, произвольное плоское возмущение, распространяющееся в направлении оси а следовательно, частота Произвольное плоское возмущение, распространяющееся в среде, разложим на монохроматические волны, Их число, вообще говоря, будет бесконечно велико. Однако можно ограничиться случаем, когда оно равно трем. Это, как будет видно из дальнейшего; не отразится на общности рассуждений и результатов. На рис. 29 представлены эти три синусоиды в какой-то момент времени. Форма результирующего возмущения зависит от их взаимного расположения. Не нарушая общности, можно принять, что в этот момент какие-то три гребня синусоид Допустим ради определенности, что фазовая скорость Таким образом, если В момент времени гребни Таким образом, по истечении времени За время Следовательно, групповая скорость будет Эта формула впервые была получена Рэлеем (1842-1919) и носит его имя. На рис. 30 приведена графическая иңтерпретация этой формулы, принадлежащая П. С. Эренфесту (1880-1933). На нем в координатах или Легко также преобразовать (8.6) к виду 3. Полученные результаты строго справедливы при линейном законе дисперсии (8.4) (или (8.5)). Однако, если возмущение занимает небольшую спектральную область, то эти результаты остаются приближенно верными и в диспергирующих непоглощающих средах. Возмущение такого типа называется группой волн. Точнее, группой волн называется волновое образование, занимающее столь узкую спектральную область, что в пределах этой области приращение фазовой скорости у с достаточной точностью может считаться пропорциональным соответствующему прирацению длины волны где Чтобы оценить требующееся для этого время, дополним разложение (8.10) членом второй степени по ( где нуликом обозначены значения соответствующих величин при Если перейти к длинам волн, то это условие преобразуется к виду Если же интервал времени или сокращенно Частоту где через Сокращенно его записывают в символической форме: После подстановки соответствующих значений в выражение (8.13) оно преобразуется в где введено обозначение Отсюда видно, что в точке с частотой то вектор В изотропных средах векторы Конечно, и здесь из-за наличия членов высших степеней, отброшенных в разложении (8.14), за время Вообразим длинную цепочку спортсменов, расположенных вдоль прямой линии на равных расстояниях друг от друга. Пусть они выполняют одно и то же гимнастическое упражнение, например периодическое движение руками, и притом так, что каждый впереди стоящий спортсмен начинает движение с некоторым запаздыванием по отношению к спортсмену, стоящему за ним. Пусть время запаздывания одно и то же для всех спортсменов. При наблюдении со стороны будет казаться, что по цепочке бежит волна с определенной фазовой скоростью, значение которой зависит от расстояния между соседними спортсменами и от времени запаздывания, о котором говорилось выше. Наличие такой волны, конечно, не означает, что каждый спортсмен приводит в движение впереди стоящего спортсмена. Так и возможность распространения в среде плоской монохроматической волны еще не дает оснований для заключения о переносе энергии с фазовой скоростью. Строго плоская монохроматическая волна непригодна для наблюдения передачи энергии, поскольку она не имеет ни начала, ни конца во времени и в пространстве. Сама постановка вопроса о передаче энергии требует отказа от такой идеализации. Необходимо перейти к волновому возмущению, ограниченному в пространстве по крайней мере с одного конца, т. е. имеющему передовой фронт, перед которым возмущение отсутствует. Подходящим волновым образованием может служить группа волн. Если выполнено условие (8.12), то средняя скорость энергии, переносимой группой, совпадает с групповой скоростью. Действительно, форма группы, какую она имела в момент Итак, в области, далекой от области сильного поглощения, скорость движения энергии в группе волн совпадает с групповой скоростью. То же самое приближенно справедливо и для скорости движения энергии в волновом возмущении, занимающем сравнительно широкую спектральную область, если только в пределах этой спектральной области групповая скорость Прямые измерения скорости света сводятся к измерению расстояния, проходимого световым сигналом за определенный промежуток времени. Из изложенного выше следует, что этот метод практически дает групповую скорость. То же самое, как показывает подробный анализ, относится ко всем известным косвенным методам измерения скорости света. Фазовую скорость, точнее — отношение фазовых скоростей в двух различных средах, можно определить по отношению показателей преломления, используя формулу волновой теории (3.7), в которую входят фазовые скорости света в рассматриваемых средах (см. § 64).
|
1 |
Оглавление
|