Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1. Распространение света в кристаллах, как и любых волн в анизотропных средах, характеризуется замечательной двойственностью, или взаимностью. Она обусловлена тем, что в анизотропных средах каждой волновой нормали соответствует луч, т. е. прямая, вдоль которой происходи г распространение энергии волны. Поскольку энергия распространяется с групповой скоростью, для исследования свойств лучей и обоснования самого понятия луча надо вычислить групповую скорость в анизотропной среде. В этом случае такую сґорость называют также лучевой скоростью. Для ее вычисления воспользуемся формулой (8.16), подставив в нее Отсюда для вектора групповой скорости находим где Групповая скорость Этот результат совпадает с формулой Рэлея (8.6) для групповой скорости в изотропной среде. Этого и’ следовало ожидать, так как он относится не ко всему вектору групповой скорости, а только На эту возможность указывал еще Г. А. Лорентц. Только в 1960 г. Е. Ф. Гросс и А. А. Каплянский, исследуя спектры поглощения на монокристаллических образцах Отличие Если лучевую поверхность и поверхность нормалей строить из общего центра Отсюда следует, что бесконечно малые изменения величин Но Эта простая интерпретация не может, однако, заменить строгое доказательство. В ее основе лежит утверждение, что расходящийся пучок, исходящий из точечного источника, ведет себя соверщенно так же, как система не зависящих друг от друга плоских волн, распространение которых чисто геометрически представляется с помощью лучевой поверхности. Впервые (1852 г.) Ламе (1795-1870) указал, что здесь необходимо решить сложную математическую задачу: точно представить волновой комплекс, исходящий в анизотропной среде из одного точечного центра (аналог шаровой волны в изотропной среде). Ламе решил эту задачу для упругой анизотропной среды. При этом он действительно (при исключении продольных волн) пришел к френелевой форме лучевой поверхности. В электромагнитной теории аналогичный вопрос сводится к решению задачи о поле точечного диполя Герца, помещенного в однородную анизотропную среду. Найдем теперь составляющую лучевой скорости Дифференцируя это соотношение по или, с учетом соотношений Из формулы (80.5) находим После подстановки этих значений в предыдущее соотношение и перехода к векторной форме получим Следовательно, Согласно первой формуле (75.5), а по формуле (75.8) В результате получим Таким образом, лучевая скорость При доказательстве предполагалось, что скалярное произведение Пусть, например, Из (81.3) следует Все результаты, относящиеся к распространению плоских волн в однородных кристаллах, были получены нами как следствия первого ряда формул. Но формулы второго ряда можно формально получить из формул первого ряда замёной всех величин по следующей схеме: Следовательно, любое соотношение между величинами, характеризующими распространение плоских волн в однородных кристаллах, останется справедливым, если все входящие в него величины заменить на соответствующие согласно схеме (81.11). Соответствующими считаются величины, стоящие друг под другом в рядах (81.11). Этот результат и называется теоремой обращения. или Это уравнение называется законом Френеля для лучевой скорости в кристалле. Оно вполне аналогично закону Френеля для нормальной скорости и может быть исследовано теми же способами. Но в этом нет необходимости, так как все результаты получаются непосредственно из теоремы обращения. Достаточно перечислить их. У равнение (81.13) второй степени относительно й и В каждом направлении в кристалле могут распространяться два линейно поляризованных луча, вообще говоря, с различными лучевыми скоростями Лучевая поверхность, как и поверхность нормалей, состоит из двух слоев. Это есть поверхность четвертого порядка. Рассмотрим ее сечения координатными плоскостями Сечение плоскостью Скорость Сечение плоскостью Скорость а вектор Сечение плоскостью Скорости а вектор Если в кристалле все три главные скорости Сравнение этой формулы с формулой (80.17) приводит к соотношению из которого следует: Если две из трех главных скоростей равны между собой, то оптические оси второго рода сливаются в одну ось, направленнуюлибо параллельно оси По числу оптических осей первого рода кристаллы разделяются на: 1) двуосные, 2) одноосные и 3) оптически изотропные. Эта классификация совпадает с классификацией, основанной на числе оптических осей второго рода. Преобразуем (80.3) с помощью теоремы обращения или на основании (81.23) Умножим и разделим левую часть этого соотношения на Сравнение этого соотношения с (80.3) дает откуда Умножая это соотношение на или Это построение является обобщением построения Гюйгенса для изотропных сред. Оно было впервые введено Гюйгенсом для объяснения двойного преломления. Гюйгенс постулировал, что элементарная волна в кристаллах состоит из двух волн: сферической и эллипсоидальной. Сферические волны порождают обыкновенную, а эллипсоидальные — необыкновенную волны. Это предположение Гюйгенса оправдалось, но оно верно только для оптически одноосных кристаллов.
|
1 |
Оглавление
|