Главная > Факторный, дискриминантный и кластерный анализ
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ВРАЩЕНИЕ С ИСПОЛЬЗОВАНИЕМ ЦЕЛЕВОЙ МАТРИЦЫ

Еще один подход к вращению основывается на априорной информации о факторной структуре.

Во-первых, можно задать значения нагрузок для каждой переменной, а затем проводить вращения с целью обеспечения минимального отличия полученной матрицы факторной структуры от заданной матрицы (в смысле критерия наименьших квадратов). При этом можно налагать дополнительные ограничения типа ортогональности. Этот вид вращения обычно применяется для анализа соответствия двух факторных структур.

Во-первых, в качестве целевой матрицы можно использовать некоторые функции от ортогонального решения.

Этот подход, известный под названием промакс-метода косоугольных вращений (Hendrickson, White, 1964), основан на том, что ортогональные вращения, как правило, близки к косоугольным. Сводя некоторые меньшие нагрузки к почти нулевым, можно получить пригодную для дальнейшего анализа целевую матрицу. Затем находятся косоугольные факторы, для которых расхождение вычислительной матрицы факторной структуры с целевой — минимально. В рамках данного метода существуют различные алгоритмы, основанные на целевой матрице факторной структуры, но мы не будем их описывать.

Таблица 7. Целевая матрица, состоящая из нулей и единиц

В-третьих, можно задать целевую матрицу, состоящую из нулей и единиц. Этот подход часто соответствует действительной степени информированности исследователя, когда ему известно только то, что некоторые нагрузки должны быть велики, а другие — малы. В табл. 7 представлен пример такой целевой матрицы.

Можно воспользоваться более общим видом целевой матрицы: некоторые ее элементы полагаются нулевыми, некоторые — равными другим фиксированным величинам, а остальные элементы полагаются произвольными. Более подробно это будет обсуждаться в разделе, посвященном конфирматорному факторному анализу.

1
Оглавление
email@scask.ru