Главная > МЕХАНИКА И ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (Матвеев А. Н.)
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Геометрические преобразования координат. Положение точек относительно материального тела, принятого за систему отсчета, описывается с помощью системы координат, как это было подробно рассмотрено в § 5. В каждой системе координат пространственное положение точки задается тремя числами, называемыми координатами. Формулы, связывающие эти числа в одной системе координат с соответствующими числами в другой системе координат, называются формулами преобразования координат или просто преобразованием координат. В качестве примеров в § 5 были рассмотрены формулы преобразования от сферической и цилиндрической систем координат к декартовой, а в $\S 6$ – преобразование от одной декартовой системы координат к другой. Эти преобразования координат происходят в одной и той же системе отсчета и являются чисто геометрическими операциями, осуществляемыми алгебраическими методами. Они полностью определяются способом введения различных систем координат и геометрическими свойствами пространства в том смысле, как это было рассмотрено в § 5. Они не связаны с движением тела отсчета.
Можно себе представить, что различные системы координат связаны с различными телами отсчета, которые покоятся друг относительно друга. Но покоящиеся друг относительно друга системы отсчета в совокупности составляют одну систему отсчета. Поэтому все эти системы координат описывают одну и ту же систему отсчета в различных переменных. Именно поэтому эти преобразования и являются чисто геометрическими. Для того чтобы рассматривать движение, необходимо было ввести измерение времени и синхронизовать часы, как это было сделано в § 7. Однако преобразование пространственных координат в одной и той же системе отсчета не затрагивает времени, поскольку физические условия в некоторой точке определяются системой отсчета, а не тем, как в ней будет характеризоваться пространственное положение точки. Можно сказать, что время иросто не имеет отношения к преобразованиям пространственных координат в пределах одной и той же системы отсчета.

Физические преобразования координат. Различные материальные тела, с которыми связаны различные системы отсчета, могут находиться в движении друг относительно друга. В каясдой из систем отсчета введены свои системы координат, время в различных точках измеряется по часам, покоящимся в этих точках и синхронизованных между собой указанным в § 7 способом. Возникает вопрос о том, как связаны координаты и время двух разных систем отсчета, если эти системы находятся в относительном движении? Ответ на әтот вопрос не может быть дан лишь на основе геометрических соображений. Это физическая задача. Она превращается в геометрическую лишь в том случае, когда относительная скорость различных систем отсчета равна нулю, физическое различие между системами отсчета исчезает и их можно рассматривать как одну систему отсчета.

Инерциальные системы отсчета и принцип относительности. Простейшее движение твердого тела – его поступательное равномерное прямолинейное движение. Соответственно этому простейшим относительным движением систем отсчета является поступательное равномерное прямолинейное движение. Одну из систем отсчета будем условно называть неподвижной, а другую – движущейся. В каждой из систем отсчета введем декартову систему координат. Координаты в неподвижной системе отсчета $K$ будем обозначать через $(x, y, z)$, а в двияущейся $K^{\prime}$ – через ( $\left.x^{\prime}, y^{\prime}, z^{\prime}\right)$. Условимся, что величины в движущейся системе координат будут обозначаться теми же буквами, что в неподвижной, но со штрихами. Оси систем координат направим, как указано на рис. 26. Вместо того чтобы говорить: \”тело отсчета, с которым связана штрихованная система координат, движется со скоростью v», будем сокращенно говорить: «штрихован-

Относительное движение штрихованной и нештрихованной систем координат
Пространстенным поворотом chстем координат и перомещениөм начала координат можно есегда добиться такого положения, что оси $x, x^{\prime}$ этих систем координат совладут, а данжение будет происходить доль осн $x$. При таком -заимном расположении систем преобразования координат имеют иаипростейший иид

Поворотом систем ноординат и перемещением начала отсчета всегда целесообразно добиться наиболев простого взаимного расположения систем координат.

Инварианты преобразований представляют то существенное в изучаемых объентах, что не зависит от случайного выбора системы координат, а действительно характеризует свойства обтентов.
1
2
Чем отличаются чисто геометрические преобразования координат от физических преобразований?
Если имеютея различные системы отсчета, то при каком усповии преобразования связанных с ними координат становятся reoметрическим преоб. разованием?
ная система координат движется со скоростью $\mathbf{v}$ относительно нештрихованной». Это не вызывает недоразумений, поскольку каждая система координат имеет смысл лишь при указании тела отсчета, с которым она связана. В том же смысле будем говорить об измерении времени в различных системах координат, о синх рошизации часов и т. д., понимая, что все это производится в соответствующи системах отсчета. Первый принцииальный вопрос, который возникает, состоит в следующем. В § 5 и 7 было рассмотрено измерение координат и времени в предположении справедливости геометрии Евклида, существовании единого времени и возможности такой синхронизации часов, которая была описана. Было сказано, что существование таких систем подтверждается опытом. Теперь необходимо указать способ нахождения таких систем отсчета. Это можно сделать лишь в результате изучения хода физических процессов в различных системах отсчета, движущихся друг относительно друга. Давно было замечено, что по наблюдениям за ходом механических явлений в системах координат, движущихся равномерно и прямолинейно относительно поверхности Земли, ничего нельзя сказать об этом двияении. Внутри кабины корабля, плывущего по морю без качки равномерно и прямолинейно, все механические явления протекают так же, как и на берегу.
Если на поверхности Земли проделать более тонкие физические опыты, например опыт с маятником Фуко, то удается обнаружить движение поверхности Земли относительно системы неподвижных звезд. Однако анализ показывает, что в этих опытах обнаруживается не скорость точек поверхности Земли относительно неподвижных звезд, а их ускорение. Из других же многочисленных опытов следует, что

во всех системах координат, движущихся равномерно и прямолинейно относительно системы неподвижных звезд и, следовательно, друг относительно друга, все механические явления протекают совершенно одинаково. Предполагается, что поля тяготения пренебрежимо малы. Такие системы координат называются инерциальными, поскольку в них справедлив закон инерции Ньютона: тело, удаленное достаточно далеко от других тел, движется относительно систем координат равномерно и прямолинейно.

Утверждение, впервые высказанное Галилеем, о том, что во всех инерциальных системах координат механические явления протекают, одинаково, называется принципом относительности Галилея. В дальнейшем в результате изучения других явлений, в частности электромагнитных, справедливость этого положения была признана для любых явлений. В таком общем виде оно называется принципом относительности специальной теории относительности или просто принципом относительности. В настоящее время он с большой точностью экспериментально доказан для механических и электромагнитных явлений. Тем не менее принцип относительности является постулатом, т. е. основополагающим допущением, выходящим за пределы экспериментальной проверки. Это обусловлено двумя обстоятельствами.

Во-первых, в пределах изучаемого круга физических явлений эксперимент позволяет проверить утверждение лишь с определенной точностью, доступной измерениям на данном этапе развития науки. Утверждение же носит абсолютный характер, т. е. предполагает, что при сколь угодно большом повышении точности результаты әксперимента будут находиться в согласии с утверждением. Ясно, что это не может быть проверено экспериментально, потому что на каждом данном этапе развития науки эксперименты могут быть выполнены лишь с конечной точностью. Во-вторых, неизвестны физические явления, которые в настоящее время не открыты. Утверждение о том, что все явления, которые будут открыты в будущем, подчиняются принципу относительности, есть также выход за пределы эксперимента. Поэтому принцип относительности является постулатом и всегда в будущем останется таковым. Это не умаляет его значения. Все научные понятия, законы, теории выработаны для определенного круга физических явлений и справедливы в определенных пределах. Выход за пределы их применимости не делает эти понятия, законы, теории и т. д. неправильными. Он лишь указывает границы, условия и точность их применимости. Прогресс науки как раз и состоит в выходе за пределы применимости существующих теорий.

Теперь вернемся к вопросу о том, в каких системах координат геометрия является евклидовой, существует единое время и возможна такая синхронизация часов, которая была описана выше? Ответ гласит: такими системами являются инерциальные системы координат. Этих систем существует бесконечное множество, но все они движутся поступательно равномерно и прямолинейно друг относительо друга. В последующем будут рассматриваться только инерциальные системы и лишь в гл. 14 – неинерциальные системы.

Ложное и истинное в физике. Для оценки значения физических теорий необходимо иметь в виду определенную асимметрию между понятиями истинного и ложного в физике. Результаты данного физического эксперимента могут либо находиться в согласии с проверяемой теорией, либо ей противоречить. Если они ей противоречат, то теория ложна. Это утверждение абсолютно и окончательно и не может быть изменено никаким последующим развитием науки. Если же оңи ей не противоречат, то это лишь означает, что данный эксперимент не противоречит теории и можно продолжать ею пользоваться. К каким выводам относительно этой теории приведет дальнейшее развитие науки на основании этого эксперимента, сказать нельзя. Иначе говоря, ложность физической теории может быть установлена на любом этапе, а истинность – лишь в перспективе развития. Это связано с философским соотношением между абсолютной и относительной истинами. На каждом этапе познается относительная истина и лишь бесконечная последовательность этапов позпания ведет человечество в направлении познания абсолютиой истины. Этот процесс иикогда не будет завершен.

Физическое содержание принципа относительности. Принцип относительности основывается на предположении, что существует бесчисленное множество систем координат, в которых геометрия является евклидовой, существует единое время и часы можно синхонизовать так, как это было описано ранее. Пространственно-временны́е соотношения в пределах каждой из этих систем координат совершенно одинаковы и по этому признаку системы координат неотличимы друг от друга. Справедливость такого предположения обосновывается большим числом экспериментальных фактов. Опыт показывает, что в таких системах координат соблюдается первый закон Ньютона и поэтому они называются инерциальными. Эти системы координат движутся друг относительно друга равномерно и прямолинейно, без вращения.

Указанные пространственно-временны́е соотношения должны соблюдаться во всем пространстве и в течение бесконечно больних промежутков времени. Если они справедливы лишь приблиненио в ограниченной области простраиства, то нельзя говорить о системе координат, в которой справедлив принцип относительности специальной теории относительности. Например, пусть система координат движется прямолинейно и равноускоренно относительно системы неподвижных звезд. В этой системе координат существует единое время, и в небольших областях пространства геометрия является с большой точностью евклидовой (при достаточно малых ускорениях), и можно приближенно синхронизовать часы так, как это было описано ранее. Однако такая система координат не относится к системам координат, к которым можно применять принцип относительности, и не является инерциальной, хотя в малой области пространства и для небольших промежутков времени пространственно-временныі соотношения в этой системе мало отличаются от аналогичных соотношений в инерциальной системе координат.

Но содержание принципа относительности не сводится лишь к характеристике пространственно-временны́х соотношений. Принцип относительности является констатацией одинакового характера течения физических продессов в инердиальных системах координат и является, следовательно, физическим утверждением. Впрочем, надо иметь в виду обсужденный ранее смысл утверждений о свойствах пространства и времени.

Categories

1
Оглавление
email@scask.ru