Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Доказательство существования. Пусть цилиндр скатывается с наклонной плоскости без скольжения. Динамика движения цилиндра при наличии лишь сил трения покоя была рассмотрена в § 51. Предположение о качении без скольжения означает, что соприкасающиеся точки цилиндра и плоскости не скользят друг относительно друга вдоль поверхности соприкосвовения. Поэтому между ними действуют силы трения покоя. Именно силы трения покоя составляют тангенциальную силу $\mathbf{T}$ на рис. 109 , которая вместе с силой $m g \sin \alpha$ приводит к вращению цилиндра. Представим себе, что поверхность наклонной плоскости и цилиндр абсолютно недеформируемы. Тогда они должны соприкасаться между собой по геометрической линии. В этом случае никаких других сил, кроме силы T трения покоя, не возникает. На линии соприкосновения материальные частицы цилиндра и наклонной поверхности не испытывают взаимных перемещений в направлении силы тревия. Погтому работа силы трения равна нулю и никаких потерь на трение нет. Следовательно, качение без скольжения абсолютно недеформируемого цилиндра по абсолютно недеформируемой поверхности не должно сопровождаться потерей энергии на трение, хотя сила трения покоя существует и обеспечивает качение. Если к оси цилиндра приложена очень большая сила, то качение без скольжения невозможно. В этом случае угловая скорость вращения цилиндра меньше, чем требуемая для обеспечения качения без скольжения, вращение цилиндра \»не успевает\» за перемещением его оси с линейной скоростью и начинается скольжение в местах соприкосновения цилиндра и плоскости. При скольжении сила трения равна максимальной силе трения покоя (если не учитывать возможной зависимости силы сухого трения от скорости). Одвако, поскольку в этом случае частицы цилиндра и плоскости, соприкасающиеся друг с другом, взаимно перемещаются по линии действия сил трения, они производят отрицательную работу, вследствие чего кинетическая энергия превращается во внутревнюю. Это будет справедливо и в том случае, когда цилиндр и поверхность абсолютно недеформируемы. Однако в реальных условиях имеются потери кинетической энергии даже при качении без скольжения. Например, цклиндр, катящийся без скольжения по горизонтальной плоскости, в конце концов останавливается. Если при скатывании цилиндра с наклонной плоскости измерить очень точно его кинетическую энергию в конце скатывания, то она оказывается меньше той потенциальной энергии, которая превратилась в кинетическую, т. е. имеются потери әнергии. Причины әтих потерь — силы трения качения, которые не сводятся ни к трению покоя, ни к трению скольжения. Механизм возникновения. Из изложенного яспо, что возникновение сил трения качения связано с деформацией. Однако нетрудно По-другому обстоит дело, если деформации не являются абсолютно упругими, как это имеет место в реальных ситуациях. В этом случае картина имеет вид, изображенный на рис. 131. Силы $F_{1}$ и $F_{2}$ различны. Сумма этих сил имеет как вертикальную составляющую, которая уравновешивает силу тяжести колеса, так и горизонтальную, направленную против скорости и являющуюся силой трения качения. Моменты сил $F_{1}$ и $F_{2}$ направлены противоположно и ве равны друг другу. Момент силы $F_{2}$, тормозящий вращение, больше момента силы $F_{1}$, его ускоряющего. Поэтому суммарный момент сил Если полная сила трения покоя при взаимодействии колеса и дороги с учетом только что указанной дополнительной силы трения превосходит максимальную силу трения покоя, то колеса проскальзывают. Поәтому скольжение колес возникает как при желании слишком быстро разогнать машину, так и при стремлении слишком быстро затормозить ее. В обоих случаях явление заноса при попытке быстрого разгона или торможения может привести к плачевным результатам. Но даже если ничего подобного не произошло, быстрого разгона или торможения все равно не получится. Дело в том, что трение скольжения при увеличении относительной скорости скольжения поверх ностей в большинстве случаев несколько уменьшается в сравнении с максимальным трением покоя. Поэтому при проскальзывании колеса максимально возможная сила разгона или торможения меньше, чем когда оно отсутствует. Следовательно, наиболее быстрый разгон и торможение возможны лишь при отсутствип проскальзывания колес. Опытный водитель всегда чувствует состояние сцепления колес с дорогой и никогда не допускает проскальзывания колес.
|
1 |
Оглавление
|