Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше
Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике
18.2. Процесс поступления жирных кислот в митохондрии состоит из трех этапов
Жирные кислоты поступают в цитозоль из двух источников. Некоторые свободные жирные кислоты доставляются клеткам кровью, будучи присоединены к сывороточному альбумину.
Рис. 18-1. Окисление фенилзамещенных жирных кислот (опыты Кпоопа). Кнооп скармливал кроликам жирные кислоты, меченные фенильной группой при
-углеродном атоме, т. е. при атоме углерода концевой метильной группы. При скармливании
-фенилзамещенных жирных кислот с четным числом атомов углерода в моче животных всегда обнаруживалась в качестве конечного продукта окисления фенилуксусная кислота, а при скармливании кислот с нечетным числом атомов углерода бензойная кислота. Из этого наблюдения Кнооп заключил, что окисление цепи жирной кислоты начинается с (
-углеродного атома и протекает путем последовательного отщепления от цепи двухуглеродных фрагментов (как это показано на рисунке поперечными пунктирными линиями красного цвета). Двухуглеродные фраг менты отщепляются, вероятно, в виде ацетата, который затем окисляется до
Остальная часть молекулы жирной кислоты (показана на красном фоне) уже более не окисляется и выводится из организма.
Отделившись от него, они проходят сквозь клеточные мембраны в цитозоль. Вторым источником жирных кислот служат содержащиеся в самом цитозоле триацилглицеролы, расщепляющиеся под действием липаз. Свободные жирные кислоты, присутствующие в цитозоле, не способны пройти через митохондриальные мембраны. Они могут попасть в митохондриальный матрикс, в котором происходит их окисление, лишь после того, как подвергнутся ряду ферментативных превращений в трехэтапном процессе. Первый этап этих превращений осуществляется ацил-СоА синтетазами ферментами, присутствующими в наружной митохондриальной мембране. Эти ферменты катализируют реакцию
где RCOOH означает жирную кислоту с длинной цепью, а РР, — неорганический пирофосфат. В ходе этой реакции возникает тиоэфирная связь между карбоксильной группой жирной кислоты и тиоловой группой кофермента А, т.е. образуется СоА-производное жирной кислоты (рис. 18-2); одновременно АТР расщепляется на АМР и неорганический пирофосфат. Это сопряженная реакция: энергия, высвобождающаяся при расщеплении АТР на АМР и пирофосфат, используется в активном центре фермента для образования новой тиоэфирной связи. СоА-производные жирных кислот, так же как и ацетил-СоА, представляют собой высокоэнергетические соединения: их гидролиз до свободной жирной кислоты и СоА—SH характеризуется большой отрицательной величиной
(около — 7,5 кал/моль).
Суммарная реакция, описываемая уравнением (1), легко обратима, потому что величина
составляет для нее всего — 0,20 ккал/моль. Удалось идентифицировать промежуточный продукт этой реакции, образующийся в связанной с ферментом форме. Он оказался аденилатом жирной кислоты, т. е. смешанным ангидридом жирной кислоты и АМР (рис. 18-3). Аденилат жирной кислоты образуется в активном центре фермента. Здесь он вступает во взаимодействие со свободным СоА—SH, в результате чего получаются СоА-производное жирной кислоты и АМР.
Пирофосфат, образующийся в ходе активации жирных кислот, может затем гидролизоваться под действием второго фермента - неорганической пирофосфатазы:
Поскольку гидролиз пирофосфата в интактных клетках идет практически до конца, фермент резко сдвигает равновесие реакции активации (1) вправо, т.е. вынуждает ее идти в сторону образования СоА-производного жирной кислоты.
Рис. 18-2. Пальмитоил-СоА. Карбоксильная группа пальмитиновой (
-углеродной) кислоты и тиоловая группа кофермента А взаимодействуют с образованием тиоэфирной связи. Обратите внимание, что СоА-эфиры жирных кислот - это очень большие молекулы.
Рис. 18-3. Структура аденилата жирной кислоты. Ацильная группа выделена красным; следует помнить, что эта ацильная группа (остаток жирной кислоты) очень велика по сравнению с аденнлатной частью молекулы (см. рис. 18-2).
Суммарная реакция, объединяющая реакции (1) и (2), может быть записана в следующем виде:
Позже мы познакомимся с другими примерами, в которых пирофосфатное расщепление АТР (разд. 14.17) с последующим гидролизом пирофосфата тоже используется для активации биомолекул.
СоА-эфиры жирных кислот неспособны проникать через внутреннюю мембрану митохондрий. Однако на наружной поверхности этой внутренней мембраны имеется особый фермент — карнитин-ацилтрансфераза, который катализирует реакцию, представляющую собой второй этап процесса переноса жирных кислот в митохондрии:
Сложные эфиры карнитина и жирных кислот способны проходить через внутреннюю мембрану митохондрий и проникать в митохондриальный матрикс. В отличие от СоА-эфиров жирных кислот они содержат не тиоэфирную, а кислородно-эфирную связь.
Рис. 18-4. Обратимая реакция, катализируемая карнитин-ацилтрансферазой.
Карнитин (рис. 18-4) обнаружен почти во всех животных и растительных тканях. Известно, что некоторые низшие организмы, например «мучной червь» (Tenebrio molitor), не обладают способностью синтезировать карнитин и потому должны получать его с пищей. В организме человека и у других позвоночных карнитин образуется из лизина.
На третьем и последнем этапе процесса поступления жирных кислот в митохондрии остаток жирной кислоты (ацильная группа) переносится от карнитина на внутримитохондриальный СоА при участии фермента, носящего название карнитин-ацилтрансферазы II.
Эта форма фермента локализуется на внутренней поверхности внутренней митохондриальной мембраны; здесь происходит регенерация СоА-производных жирных кислот и отсюда они поступают в матрикс митохондрии:
Может показаться, что этот трехэтапный процесс [уравнения (1) (3)], обеспечивающий поступление жирных кислот в митохондрии, излишне сложен. Он, однако, позволяет разделить два пула кофермента А - цитозольный и внутримитохондриальный. Такое разделение необходимо, поскольку эти пулы выполняют разные функции. Митохондриальный пул СоА используется главным образом для окислительного расщепления пирувата, жирных кислот и некоторых аминокислот, тогда как цитозольный пул участвует в биосинтезе жирных кислот. В связи с этим уместно вспомнить, что разделение цитозольного и внутримитохондриального пулов NAD и АТР также обеспечивается внутренней митохондриальной мембраной (разд. 17.2). При этом важно и то обстоятельство, что фермент, катализирующий второй этап этого трехэтапного процесса, - карнитин-ацилтрансфераза 1 - является регуляторным ферментом. Как мы увидим далее, он регулирует скорость поступления ацильных групп в митохондрии, а следовательно, и скорость окисления жирных кислот.
Теперь СоА-эфиры жирных кислот готовы для того, чтобы их жирнокислотный компонент был подвергнут окислению при помощи ряда специфичных ферментов в матриксе митохондрии.