Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 6. Краткий обзор математических моделей иммунитетаБурное развитие математического моделирования в иммунологии началось немногим более 10 лет назад — до этого известна практически одна попытка математически связать динамику антитело-образования с количеством плазматических клеток [18]. В самом начале 70-х годов появились работы Молчанова [19, 20], которые, как нам кажется, предвосхитили многие более поздние результаты. Пользуясь такими обобщенными понятиями, как «инфекционное начало» иммунной реакции:
Скорость производства иммунных сил была представлена в виде пороговой (или даже многоуровневой) функции Также в начале 70-х годов в США выходит обширная серия моделей иммунитета, развитая Беллом [22—25] (с его работами по распределенным моделям в микробиологии мы познакомились в предыдущей главе). Основные положения теории Белла очень схожи с изложенной выше (в § 2) моделью иммунитета, созданной нами независимо и опубликованной впервые в 1971 г. [6]. Обе модели содержат практически те же самые динамические переменные: клетки-предшественники, размножающиеся лимфоциты, плазматические и памятные клетки, антитела и антиген. Основное отличие состоит в способе задания функций перехода клеток из одной фазы в другую: в наших работах вероятности перехода линейно зависят от концентрации антигена, а у Белла — это сложные нелинейные функции от доли клеточных рецепторов, занятых антигеном. Первая модель Белла [22] содержала шесть дифференциальных уравнений и описывала динамику иммунной реакции в целом. Далее [23, 24] модель последовательно усложнялась для описания действия мультивалентных антигенов, толерантности высокой и низкой доз (для чего вводились пороговые ограничения сверху и снизу); рассмотрена также модель, содержащая несколько клонов лимфоцитов, различающихся по константам связи с антигеном (авидности). Системы уравнений становились все более высокого порядка (даже до 96-го!) и уже не поддавались аналитическому исследованию. Наверное поэтому в 1973 г. появилась работа [25], содержащая всего два уравнения для концентраций антигена
причем концентрация комплекса
Аналитическому исследованию модели (5.25), а также более сложной модели третьего порядка посвящены работы Пимбли [26, 27], где основное внимание уделяется периодическим решениям. Следует заметить, что последние работы носят уже чисто формальный математический характер, как и работы Мерилла [28], где система иммунитета сводится к модели с кубической нелинейностью третьего порядка; автор исследует бифуркации в системе и проводит аналогию с теорией катастроф Тома. Развитием идеи Белла о различии антител по величине связи с антигеном служат работы Бруни с соавторами (см., например, [29]), где вместо численностей популяций лимфоцитов в уравнения входят плотности их распределения по константам связи Все это направление моделирования гуморального иммунитета обобщено в книге «Теоретическая иммунология», вышедшей в Нью-Йорке в 1978 г. под редакцией Дж. Белла, А. Перельсона и Дж. Пимбли Второе направление моделирования иммунных явлений, определившееся в середине 70-х годов и развивавшееся, в основном, в нашей стране, — это модели, в которые в явном виде входит запаздывание. Здесь прежде всего отметим обширный цикл работ Диброва, Лифшица и Волькенштейна, посвященный проблемам гуморального иммунитета [П10, 30-35]. Исходная модель содержит три дифференциальных уравнения для антител а, антигена Тщательная разработка модели позволила авторам получить (аналитически или путем численного эксперимента) практически все возможные режимы протекания гуморальной иммунной реакции. Однако все эти работы выполнены в абстрактном плане и не содержат конкретных примеров применения модели креальным процессам. Широкий круг явлений иммунитета охватывают модели инфекционных болезней, развиваемые в группе Марчука [36-38, П32, П35] (см. также сборник [П70], с. 69-86, 114—120). Простейшая математическая модель инфекционного заболевания записывается в виде системы четвертого порядка с запаздыванием:
где V — концентрация обобщенного «вируса», С — плазмацитов, Исследование характера решений системы (5.27) позволило выделить четыре основные формы протекания инфекционного заболевания: 1) легчайшая, когда Большой интерес представляет выдвинутое авторами предложение лечения хронических заболеваний путем перевода их в острую форму. С помощью численных экспериментов показано, что этого можно достичь как с помощью температурного эффекта, так и введением биостимулятора — конкурирующего неразмножающегося непатогенного антигена. В этом случае временно ослабевает противовирусный иммунитет, вирус получает возможность размножаться и, после выведения биостимулятора, вызывает усиленный иммунный ответ, приводящий к быстрому выздоровлению. Кроме простейшей модели (5.27) в указанных работах развивается также уточненная модель инфекционного заболевания, включающая динамику стволовых клеток, Еще более полную систему уравнений, охватывающую почти все аспекты современной теории иммунитета (взаимодействие Третье направление математических моделей в иммунологии — это «пороговые» модели, развиваемые в работах Вальтмана и Фридмана [42, 43]. Предполагается существование двух порогов: для начала пролиферации лимфоцитов и для начала производства антител. Первый порог заключается в накоплении достаточного количества антигена для стимуляции клеток-предшественников, второй — в достижении лимфоцитами заданного порогового уровня. Четвертое направление содержит работы, в которых выработка антител рассматривается как задача оптимальной стратегии организма. Например, в интересной работе Перельсона [44] рассматривается задача оптимальной стратегии: как распределить общую клеточную популяцию между размножающимися лимфоцитами и тупиковыми плазматическими клетками, чтобы элиминация антигена произошла за минимальное время. Для задачи, содержащей три дифференциальных уравнения: для лимфоцитов, плазмацитов и антител, рассмотрена оптимальная стратегия при различных дозах вводимого антигена. Оказалось, что для малых доз достаточно тех антител, которые производят лимфоциты, и организму выгодно плазмацитов не производить совсем. При больших дозах выгодно переключение: на начальном участке производятся только пролиферирующие лимфоциты, а после переключения — превращение всех больших лимфоцитов в плазматические клетки. Работа [44] интересна также потому, что в ней проводятся аналогии между задачей оптимальной стратегии в иммунитете и в других областях биофизики. Новый подход к биологическим системам демонстрируется в работах Глушкова, Иванова, Яненко [45, 46, П15], где используется класс динамических моделей, первоначально созданных для экономики. А именно, динамическая система представляется интегрально-функциональными соотношениями в виде равенств и неравенств. В простейшем случае «двухпродуктовая модель» записывается следующим образом:
Здесь В последние годы широкое развитие получила сетевая теория Ерне (см. [47—49, 51]). Ерне предположил, что антитела, кроме детерминанты, комплементарной к антигену, имеют другие детерминанты (идиотипы), действующие как аутоантигены. К этим идиотипам тоже образуются антиидиотипические антитела и т. д., т. е. создаются целые иммунные сети (network). Существование иммунных сетей в настоящее время не вызывает сомнения, так как антиантитела обнаружены экспериментально. Однако объяснить все особенности иммунитета только взаимодействием отдельных звеньев этих цепей не удается. Несколько в стороне от перечисленных здесь динамических моделей стоят работы Жилека, развивающего стохастические модели иммунного ответа, на которых мы здесь останавливаться не будем (соответствующие ссылки см. в [П70], с. 15-25). Упомянем также цикл работ Леви (см., например, [50]), в которых на основании анализа обширного экспериментального материала определяется функциональная связь между количеством плазматических клеток и концентрацией антигена. В заключение этого параграфа отметим, что поток моделей в иммунологии нисколько не скудеет, а все более расширяется (обширную библиографию можно найти в обзорах [51, 52], а также в сборнике [П70]). Однако большинство моделей, как мы видели, носят теоретический характер и не могут быть сразу приложены к конкретным задачам. Более того, проблеме определения коэффициентов моделей почти не уделяется внимания (пожалуй, кроме первой модели Белла [22]). Поэтому мы в своем изложении (см. § 2) остановились довольно подробно на обезразмеривании модели и адекватном определении констант из опытных данных. Второе замечание касается проблемы явного введения запаздывания или порогового эффекта. Нам кажется, что введение функций с запаздывающим аргументом иногда приводит к значительному усложнению модели и невозможности ее аналитического исследования, тогда как учет лишней ступени дифференцировки клеток, т. е. введение лишнего дифференциального уравнения позволяет получить те же результаты более простым путем. Однако это вопрос не принципов, а, скорее, вкуса. Что же касается явного введения порога, то и это нам кажется не всегда оправданным: многие модели обходятся без порогов и в то же время достаточно хорошо описывают динамику иммунного ответа. И последнее, что хотелось бы еще раз подчеркнуть. Мы являемся противниками громоздких моделей, содержащих десятки дифференциальных уравнений, и глубоко убеждены, что такие модели не помогают, а, скорее, мешают в понимании исследуемых явлений. Модели должны быть простыми, «минимальными» для данной конкретной задачи и, конечно, не могут служить во всех возможных ситуациях.
|
1 |
Оглавление
|