Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 6. Конкретные модели диссипативных структур1. Модель Тюринга и «брюсселятор». Как мы уже упоминали, первая модель ДС была предложена Тюрингом в 1952 г. [1]. Работа Тюринга преследовала цель — продемонстрировать принципиальную возможность спонтанного образования ДС. В этой работе в общем виде были получены условия, при которых нарушается устойчивость по отношению к возмущениям с определенным волновым числом, т. е. условия бифуркации Тюринга (см. гл. 8, § 2). Специально подчеркивалась необходимость нейтральных, не несущих информации, граничных условий; информация о ДС должна содержаться в самой системе, т. е. в структуре нелинейной части модели, в ее параметрах. Таким образом, в работе Тюринга уже содержалась, хотя и в недостаточно четкой форме, идея о параметрической записи информации о конечной ДС. В идейном отношении работа Тюринга существенно опередила свое время. Конкретная модель, предложенная и исследованная Тюрингом, преследовала чисто иллюстративные цели и не претендовала на описание какого-либо реального процесса. В работах Пригожина и его школы
Здесь Соответствующая модель (см. Как уже упоминалось в § 2, на отрезке Таким образом, брюсселятор является сейчас одной из наиболее изученных и популярных моделей ДС. К абстрактным моделям ДС, не претендующим на описание конкретного процесса, можно отнести распределенную систему, точечная часть которой соответствует модели Ван-дер-Поля и коэффициент диффузии автокаталитической переменной меньше, чем демпфирующей. В силу симметрии (присутствие нелинейных членов нечетных степеней) эта модель принадлежит классу сборки и должна давать ДС ступенчатого типа. 2. Модель Гирера — Майнхарта. Модель, претендующая на более конкретное описание морфогенеза, была предложена в 1972 г. Гирером и Майнхартом [2] (далее — модель они образуются в результате ферментативной реакции, скорость которой Подчеркнем, что необходимость существования активатора и ингибитора для образования ДС является центральной в модели ГМ. Наличие автокаталитической и демпфирующей переменных (роль которых могут играть активатор и ингибитор) действительно необходимо для формирования ДС; это не гипотеза, а следствие условий Тюринга. Однако роль таких переменных могут играть разности (или, в общем случае, линейные комбинации) концентраций веществ, каждое из которых не является ни активатором, ни ингибитором. Поэтому утверждение об участии в морфогенезе реальных активаторов и ингибиторов является гипотезой, которую, в принципе, можно проверить экспериментально. В этом состояла привлекательная сторона модели ГМ. Помимо этого предполагалось, что имеется постоянный источник активатора (за счет другой, возможно, не ферментативной, реакции) и процессы спонтанного оттока (распада) активатора и ингибитора. Оба метаболита диффундируют с коэффициентами
Модель (11.57) можно представить в безразмерном виде (11.29); основные свойства ее мы уже обсуждали в предыдущем параграфе. Модель ГМ преследовала цель — сопоставление теоретических данных с экспериментальными. Эта проблема решалась в два этапа. На первом этапе было показано [2, 3], что путем подбора параметров с помощью численных расчетов на ЭВМ можно получить распределение концентраций активатора, похожее на пространственное распределение «щупалец» у гидры. Подчеркнем, что речь идет о чисто внешнем сходстве двух, вообще говоря, различных процессов. Сходство было достигнуто при различных коэффициентах диффузии, и распределение активатора в ДС имело пичковый характер. На следующем этапе предполагалось более детальное сопоставление с биохимическими данными о распределении активатора и ингибитора. Основные качественные предсказания модели состояли в том, что активаторы должны быть сконцентрированы в «пичках», а ингибиторы распределены плавно. Проверка этого была осуществлена в работах [29, 30]. Результаты не подтвердили предсказания модели; оказалось, что активаторы и ингибиторы распределены по телу гидры одинаково плавно. На наш взгляд, этот результат свидетельствует о том, что активаторы и ингибиторы, в буквальном смысле терминов, в морфогенезе существенной роли не играют; роль автокаталитической и демпфирующей переменных выполняют комбинированные величины, о чем уже упоминалось выше. 3. Распределенные модели дифференциации. Модели, в которых наряду с бифуркацией Тюринга возможна также бифуркация триггерного типа, соответствующая дифференциации, исследовались нами, начиная с 1967 г. ([32]; П47); они основаны На модели Жакоба-Моно (см. гл. 2, § 4). Однако модель ЖМ даже при учете диффузии специфических метаболитов,
Здесь принято: Принято ради простоты, что конкурирующие генетические и эпигенетические процессы равноправны, т. е.
где
и
При этом стационарная концентрация специфических переменных
Знак «больше» соответствует области существования ДС. Напомним, ранее при анализе модели ЖМ (см. гл. рассматривалось как условие Достижения компетенции к дифференциации специфической подсистемы. Сопоставляя его с условием бифуркации Тюринга, видим, что образование ДС возможно лишь тогда, когда компетенция к дифференциации заведомо достигнута Таким образом, существует область Этот вывод может быть проверен экспериментально. Согласно изложенному, появление разметки должно коррелировать с достижением достаточно высокого уровня общего базового метаболизма. Признаки появления разметки достаточно надежно детектируются визуально. В качестве критерия общего метаболизма можно принять содержание свободных радикалов (как и было сделано в гл. 2). В области параметров, где Отметим важное свойство модели ЖМ: при ее построении не использовалась гипотеза о наличии активаторов и ингибиторов. Более того, каждое из веществ
В области параметров, такой, что
Физический смысл условия Образующиеся в В более общем случае модель Жакоба — Моно несимметрична и специфическая подсистема описывается системой (11.58а, б), в которой параметры Другая модель, содержащая две переменные, но допускающая как бифуркацию Тюринга, так и триггерный режим, рассматривалась в [14]. В безразмерной форме модель имеет вид
В основе модели лежит гипотеза об автокаталитической реакции типа
где Подведем итог изложенному. В распределенной модели, описывающей дифференциацию, мягкое возникновение ДС возможно лишь после достижения компетенции к дифференциации, т. е. возникновения триггерных свойств в специфической подсистеме модели. С другой стороны, реализация компетенции, т. е. появление дифференцированной ткани, сама зависит от образования ДС. Так, в симметричной модели ЖМ (а также во всех моделях типа сборки) появляются упорядоченные участки, дифференцированные в различных направлениях. Это происходит после и в результате разметки, т. е. образования ДС. Таким образом, при модельном исследовании процессы морфогенеза (точнее разметки) и дифференциации оказываются тесно связанными. Вопрос, какой из них является первичным, а какой вторичным (или, что является причиной, а что следствием), — представляется некорректным. Оба процесса протекают последовательно и на разных стадиях каждый из них создает условия реализации другого.
|
1 |
Оглавление
|