Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике § 2. Информация и энтропияВопрос о связи между энтропией и информацией обсуждается уже давно, фактически со времен формулировки парадокса с «демоном Максвелла». Некоторое время проблема казалась отвлеченной. Сейчас, однако, она становится актуальной, поскольку оказывается связанной с вполне конкретными вопросами: какова энтропийная (и энергетическая) плата за информацию, каковы минимальные размеры информационной ячейки и т. п. Эти вопросы приобретают особую остроту в связи с биологической спецификой. Во-первых, информационные системы в живой природе обладают малыми (микроскопическими) размерами. Во-вторых, они функционируют при нормальной температуре, т. е. в условиях, когда тепловые флуктуации не пренебрежимо малы. -третьих, в биологии особую важность приобретает запоминание и хранение информации. Отметим, что в технике более актуальны проблемы передачи информации; на примере оптимизации передачи были разработаны основные положения теории информации. Вопросам же рецепции и хранения информации уделялось меньше внимания. В биологии, напротив, эти вопросы становятся первостепенными. Не претендуя на строгое определение понятия «информация», подчеркнем два необходимых ее атрибута: 1) информация предполагает выбор одного (или нескольких) вариантов из многих возможных, 2) сделанный выбор должен быть запомнен. Подчеркнем: второе условие — запоминание информации — является очень важным. Впервые на это обратил внимание Кастлер [П26] в 1960. г. В процессах передачи информации «запоминаемость» играет меньшую роль, чем при рецепции, обработке и хранении информации. Действительно, передающая система обязана запомнить информацию лишь на время передачи, которое в принципе может быть коротким. В биологии условие запоминания на длительный срок, напротив, играет важную роль. Количеством информации называют величину
где полное число возможных вариантов, число выбранных вариантов. Количество информации отлично от нуля, если известно, что по каким-либо причинам из априорных вариантов реализовался один из вариантов (но не известно, какой именно). Это количество максимально, если т. е. известно, что реализовался (выбран) один определенный вариант. Величина если ничего не известно. Основание логарифма (т. е. двоичная система) выбрано для удобства; единицей информации в этой системе является один бит; он соответствует выбору одного варианта из двух возможных. Выражение (12.8) легко обобщается на случай, когда a priori N вариантов могут реализоваться с вероятностями а реализуются a posteriori с вероятностями тогда
Выбор или реализация апостериорных вариантов может осуществляться двумя различными способами; либо в результате действия сторонних сил — в этом случае говорят о рецепции информации от другой (сторонней) системы, либо спонтанно, в результате неустойчивого поведения самой системы — в этом случае имеет место рождение (возникновение) новой информации. Информационная система должна быть способной: а) рецептировать информацию, б) хранить или, что то же, запоминать информацию, в) выдавать информацию при взаимодействии с другой, акцепторной по отношению к рассматриваемой, системой. Отсюда следует, что информационная система должна быть мультистационарной. Число устойчивых стационарных состояний определяет информационную емкость, т. е. максимальное количество информации, которое система может рецептировать:
Система должна быть диссипативной. Это значит, что вещественные части всех характеристических чисел стационарных состояний отрицательны; это является необходимым условием запоминания информации. Примером такой системы может служить китайский биллиард. Он представляет собою шарик на доске с бортами, лунками и штырями. Принадлежность шарика к определенной лунке и является информацией о состоянии системы. На микроскопическом (молекулярном) уровне проблема конструкции информационной системы становится не тривиальной [8]. Во-первых, в мультистационарной системе каждая из фазовых траекторий располагается только в определенной части фазового пространства (в области притяжения данного состояния). Весь фазовый объем недоступен для каждой из траекторий. Это означает, что информационная система не является полностью зргодической и термодинамически равновесной. Должны существовать выделенные степени свободы которые в течение длительного времени сохраняют свои значения, а не перебирают все возможные. Поясним это на примере китайского биллиарда. Выделенными степенями свободы здесь являются координаты шарика. Изменение х и у ограничено краями лунок; шарик не может переместиться в другую лунку без стороннего вмешательства. При этом другие степени свободы, связанные с колебаниями атомов как шарика, так и доски, могут (и далее должны) быть эргодическими. Во-вторых, условие диссипативности, как мы видели, связано с неустойчивостью (и отсюда хаотичностью) микроскопических движений. Это значит, что соответствующие степени свободы обязаны быть эргодическими. Таким образом, фазовое пространство информационной системы должно быть расслоено на эргодическую и динамическую подсистемы. Однако такое расслоение нельзя осуществить абсолютно строго, различные степени свободы всегда связаны друг с другом. Это проявляется в том, что динамические (информационные) степени свободы флуктуируют и существует некоторая вероятность их радикального изменения (например, переброс шарика в другую лунку) под влиянием эргодической подсистемы (т. е. тепловых флуктуаций). В макроскопических информационных системах эта вероятность пренебрежимо мала, однако в микроскопических системах ее нужно учитывать. Таким образом, условия мультистационарности и диссипативности не могут быть выполнены одновременно абсолютно строго; они являются дополнительными. Это значит, что условие «запоминания» не может быть абсолютным, можно лишь говорить о запоминании с определенной вероятностью на определенное (не бесконечно большое) время. Иными словами, информационная система не может помнить вечно. В реальных информационных системах характерное время запоминания зависит от их конструкции, температуры и свободной энергии. Вопрос о связи между энтропией и информацией в свете изложенного оказывается не тривиальным. Физическая энтропия представляет собой логарифм фазового объема, доступного для системы (с учетом условности этого понятия — см. выше), измеренного в единицах где число степеней свободы и размер минимальной (квантовой) ячейки фазового пространства. Формально энтропия может быть представлена в виде
Величина является энтропией, измеренной в битах; число ячеек фазового пространства. С другой стороны, информационная емкость может быть записана в форме
где размер фазового пространства одной информационной ячейки. Сопоставление формул (12.11) и (12.12) показывает, что энтропия и информация отличаются как коэффициентом, так и размером ячейки. Совпадение (12.11) и (12.12) по форме послужило основанием для утверждения о тождественности понятий информации и энтропии. Точнее, утверждается, что энтропия есть недостающая информация о состоянии системы и (или) информация есть недостающая энтропия, т. е. разность между максимальной энтропией, которой обладала бы система без информации, и реальной энтропией, которую система имеет, обладая полученной информацией. В этой связи используется термин негоэнтропия, который считается тождественным информации. Многих, однако, эти утверждения не удовлетворяют и вопрос о связи информации и энтропии остается дискуссионным. Обсудим вопрос более детально. Прежде всего бросается в глаза большая количественная разница между информацией, заключенной в системе, и ее энтропией. Блюменфельд (см. [П61) на ряде биологических примеров (клетка, организм и т. д.) показал, что содержащаяся в объекте энтропия во много раз (на несколько порядков) превышает имеющуюся нем информацию. Разница еще больше в современных неживых информационных системах (например, в печатном тексте энтропия превышает информацию примерно в 1010 раз). Столь большая количественная разница не случайна. Она связана с тем, что объем фазового пространства информационной ячейки велик по сравнению с величиной Последнее обусловлено тем, что информационная ячейка должна содержать эргодическую подсистему и, следовательно, занимать большой (по сравнению с элементарной ячейкой) объем. Таким образом, разница масштабов энтропии и информации не случайна, а связана с их принципиальным различием. Энтропия — это мера множества тех состояний системы, о пребывании в которых система должна забыть; информация — мера множества тех состояний, о пребывании в которых система должна помнить. Посмотрим, как связаны изменения энтропии и информации на примере китайского биллиарда. Ограничим рассмотрение временем существования системы. Дело в том, что любая информационная система, будучи неравновесной, по структурным степеням свободы релаксирует и разрушается, т. е. перестает быть информационной. Время структурной релаксации больше (или равно) времени запоминания. В нашем примере речь идет о спонтанном разрушении барьеров между лунками; характерное время этого процесса достаточно велико. В течение этого времени структурные степени свободы не меняются, следовательно, и не вносят вклада в энтропию. (Часть фазового пространства, связанная с этими степенями свободы, в это время является недоступной.) Энтропия при этом связана только со степенями свободы, которые быстро релаксируют. Их поведение не зависит от того, в какой из лунок находится шарик и положен ли он в какую-либо лунку или лежит около. Физическая энтропия системы во всех случаях одинакова, однако количество информации различно: оно равно нулю, если шарик не положен в лунку, и равно если он лежит в определенной лунке. Процесс рецепции информации (в нашем случае — помещение шарика в определенную лунку) требует затраты работы которая переходит в тепло (в противном случае рецепция не была бы необратимой). Следовательно, при рецепции физическая энтропия системы увеличивается (на величину и одновременно увеличивается информация (на величину Обычно но в остальном они никак не связаны. Таким образом, при рецепции информации соотношение не соблюдается. Несколько сложнее обстоит дело в случае возникновения новой информации. Система, способная рождать информацию, должна обладать всеми свойствами информационной и, кроме того, удовлетворять условию: определенный слой ее фазового пространства должен быть зргодическим, включая выделенные (информационные) степени свободы. Именно в этом случае задаются начальные условия при спонтанном возникновении информации. Примером может служить тот же китайский биллиард со штырьками. Если вначале кинетическая энергия шарика достаточно велика (больше барьеров между лунками), то шарик движется по всей доске, не застревая в лунках. В силу неустойчивости отражения от шпилек (они играют роль вогнутых поверхностей в биллиарде Синая, рис. 12.2) движение шарика стохастично и начальные условия быстро забываются. При уменьшении кинетической энергии (в силу диссипативности системы, в данном случае из-за трения и соударений) до величины порядка высоты барьера шарик попадает в область притяжения одной из лунок и остается в ней. Таким образом, выбранное состояние «запоминается», что и является рождением информации. Тот же принцип используется в рулетке и других игровых машинах. Во всех этих случаях критерием отделения эргодического слоя начальных условий от информационного слоя является величина начальной свободной энергии (в биллиарде это кинетическая энергия шарика). Она же определяет и прирост энтропии системы в процессе рождения информации. Оценим величину Если информационная емкость системы мала: то главным ограничением снизу является условие где барьер между лунками. Барьеры определяют время «запоминания» согласно соотношению
При достаточно большой (макроскопической) величине с барьер составляет Таким образом, в этом случае увеличение энтропии, приходящееся на один бит информации, равно
или в информационных единицах:
В случае, когда информационная емкость велика (т. е. нужно учесть другое условие: до того как «выбрано» определенное состояние, система должна побывать хотя бы раз в области влияния каждого из возможных состояний. Пусть при прохождении каждого из состояний диссипирует энергия Минимальная величина порядка энергии тепловых флуктуаций: При этом ограничена снизу условием
Прирост энтропии на один бит информации при этом равен
или
Таким образом, в случае возникновения информации за нее нужно «платить» увеличением энтропии, таким, что Однако соотношения типа «прирост информации равен убыли энтропии» и в данном случае не имеют места. Обсудим ситуацию, которая возникает, если отказаться от условия запоминания информации. В этом случае можно говорить об информации о мгновенных значениях координат и импульсов всех атомов системы. Чтобы отличить эту «информацию» от настоящей (запоминаемой), Лайзер [9] предложил термин микроинформация запоминаемая информация при этом именуется макроинформацией. Если известно, что в данный момент система находится в одной (из возможных) определенной ячейке фазового пространства, то количество микроинформации максимально и равно
Энтропия системы при этом равна нулю, поскольку все остальные ячейки в данный момент можно считать «недоступными». Если известно, что в данный момент система находится в любой из возможных ячеек, но неизвестно, в какой, то микроинформация равна нулю, а энтропия максимальна и равна
Если известно, что в данный момент система находится в одной (любой) из ячеек то
и между микроинформацией и энтропией имеет место простое соотношение:
Микроинформация, в принципе, может быть превращена в макроинформацию путем рецепции ее другой информационной системой. Например, путем фотографирования картины броуновского движения мгновенные координаты частиц могут быть запечатлены (запомнены) на фотопленке. Эта информация затем может использоваться для каких-либо (даже не связанных с движением частиц) целей. Важно, что при этом в процессе рецепции (превращения микроинформации в макро- должна быть затрачена работа и повышена энтропия всей системы на величину, заведомо превышающую количество запомненной информации. Именно этот процесс — превращение микроинформации в макро- и использование ее для управления — лежит в основе парадокса с «демоном Максвелла». Разрешение его в том, что процесс рецепции микроинформации и использования ее для управления сопровождается увеличением энтропии всей системы/превосходящем информацию. В связи со столь существенной разницей между микро- и макроинформацией используется также и два понятия энтропии. Наряду с физической энтропией используется информационная энтропия, которая определяется как
где число стационарных устойчивых макросостояний, о которых известно, что система находится в одном из них (но неизвестно, в каком именно). Согласно определению, информационная энтропия связана с информацией соотношением
Увеличение информации (при сохранении при этом всегда сопровождается равным уменьшением информационной энтропии. Термин Информационная энтропия удобно использовать, когда речь идет о возникновении информации и упорядочении системы. Именно в этом смысле он употребляется в гл. 2. Подчеркнем, что с физической энтропией эта величина, вообще говоря, не связана. Итак, основой отличия физической энтропии и информации (как качественно, так и количественно) является условие запоминания и обусловленный этим большой объем фазового пространства информационной ячейки по сравнению с элементарным. Представляет интерес оценить величину «запаса». Сделать это в общем виде сейчас трудно. Можно думать, однако, что в живой природе реализовался оптимальный размер (т. е. минимальный, но удовлетворяющий требованиям). Его можно оценить, используя фактические данные. В молекуле ДНК ячейкой, содержащей два бита информации, является пара комплементарных нуклеотидов. Она содержит около атомов. Энтропия, связанная с колебательными степенями свободы, составляет бит, или энтропия, приходящаяся на один бит информации, равна примерно 60 бит. Отсюда объем фазового пространства, приходящийся на один бит, равен
Эту оценку можно рассматривать как нижнюю, поскольку здесь не учтены окружающие ДНК белки и другие факторы, предохраняющие ДНК от разрушения и, следовательно, необходимые для «запоминания».
|
1 |
Оглавление
|