Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
С прохождением тока через проводник, обладающий сопротивлением, неразрывно связано выделение теплоты (нагревание проводников). Наша задача — найти количество теплоты, выделяющееся за единицу времени на определенном участке цепи. Здесь возможны два случая, которые мы и рассмотрим последовательно,-однородный и неоднородный участки цепи. В основу решения этого вопроса мы возьмем закон сохранения энергии и закон Ома. Однородный участок цепи. Рис. 5.9 участка через сечение 1 и такой же заряд выйдет из этого участка через сечение 2. Так как распределение зарядов в проводнике остается при этом неизменным (ток постоянный), то весь процесс эквивалентен непосредственному переносу заряда Поэтому совершаемая при таком переносе работа сил поля Согласно закону сохранения энергии эквивалентная этой работе энергия должна выделяться в иной форме. Если проводник неподвижен и в нем не происходят химические превращения, то эта энергия должна выделяться в форме внутренней (тепловой) энергии, в результате чего проводник нагревается. Механизм этого превращения достаточно прост: носители тока (например, электроны в металлах) в результате работы сил поля приобретают дополнительную кинетическую энергию и затем расходуют ее на возбуждение колебаний решетки при столкновении с ее узлами-атомами. Итак, согласно закону сохранения энергии элементарная работа А так как по закону Ома Эта формула выражает известный закон Д жоул я-Л енц а. Получим выражение этого закона в локальной форме, характеризующей выделение теплоты в различных местах проводящей среды. Для этой цели выделим в данной среде элементарный объем в виде цилиндрика с образующими, параллельными вектору где ет количество теплоты, выделяющееся за единицу времени в единице объема проводящей среды,—удельную тепловую мошность тока: Эта формула выражает з акон Дж оуля-Л енца в локальной форме: удельная тепловая мощность тока пропорциональна квадрату плотности электрического тока и удельному сопротивлению среды в данной точке. Уравнение (5.20) представляет собой наиболее общую форму закона Джоуля-Ленца, применимую к любым проводникам вне зависимости от их формы, однородности и от природы сил, возбуждающих электрический ток. Если на носители тока действуют только электрические силы, то на основании закона Ома (5.10) Таким образом, последнее уравнение имеет менее общий характер, нежели (5.20). Неоднородный участок цепи. Здесь слева стоит выделяющаяся на участке тепловая мощность Таким образом, уравнение (5.22) означает, что тепловая мощность, выделяемая на участке цепи между точками 1 и 2, равна алгебраической сумме мощностей электрических и сторонних сил. Сумму этих мощностей, т. е. правую часть (5.22), называют м ощ но ст ь т ок а на рассматриваемом участке цепи. Тогда можно сказать, что в случае неподвижного участка цепи мощность выделяемой на этом участке теплоты равна мощности тока. Применив (5.22) ко всей неразветвленной цепи (тогда Получим теперь уравнение (5.22) в локальной форме. Для этого умножим обе части уравнения (5.11) на
|
1 |
Оглавление
|