Главная > Основные законы электромагнетизма (И.Е. Иродов)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

До сих пор мы рассматривали электрическое и магнитное поля раздельно, не обнаруживая никакой видимой связи между ними. Это возможно было сделать лишь потому, что оба поля являлись статическими, в других же случаях так поступать нельзя.

Мы увидим, что электрическое и магнитное поля всегда должны рассматриваться вместе как одно полное электромагнитное поле. Другими словами, оказывается, что электрическое и магнитное поля являются в некотором смысле различными компонентами единого физического объекта, который мы называем электромагнитным пол е м.

Деление же электромагнитного поля на электрическое и магнитное имеет относительный характер: такое деление в решающей степени зависит от системы отсчета, в которой рассматриваются явления. При этом поле, постоянное в одной системе отсчета, в общем случае оказывается переменным в другой системе.
Приведем некоторые примеры.
Заряд движется в инерциальной $K$-системе отсчета с постоянной скоростью v. В этой системе отсчета мы будем наблюдать как электрическое, так и магнитное поля данного заряда, причем оба поля переменные во времени. Если же перейти в инерциальную $K^{\prime}$-систему, перемещающуюся вместе с зарядом, то в ней заряд покоится и мы будем наблюдать только электрическое поле.

Два одинаковых заряда движутся в $K$-системе отсчета навстречу друг другу с одинаковой скоростью $v$. В этой системе отсчета мы будем наблюдать и электрическое, и магнитное поля, оба переменные. Найти такую $K^{\prime}$-систему, где наблюдалось бы только одно из полей, в данном случае нельзя.

В $K$-системе отсчета существует постоянное неоднородное магнитное поле (например, поле неподвижного постоянного магнита). Тогда в $K^{\prime}$-системе, движущейся относительно $K$-системы, мы будем наблюдать переменное магнитное поле, и как увидим далее, электрическое поле.
Таким образом, становится ясным, что соотношения

между электрическим и магнитным полями оказываются разными в различных системах отсчета.

Прежде чем обратиться к основному содержанию этой главы — законам преобразования полей при переходе от одной системы отсчета к другой, выясним следующий важный для дальнейшего вопрос: как ведут себя при таких переходах сам электрический заряд $q$ и теорема Гаусса для вектора E.

Инвариантность заряда.
В настоящее время имеются исчерпывающие доказательства того, что полный заряд изолированной системы не меняется при изменении движения носителей заряда.

В качестве доказательства можно сослаться на нейтральность газа, состоящего из молекул водорода. В этих молекулах электроны движутся со значительно большими скоростями, нежели протоны. Поэтому если бы заряд зависел от скорости, то заряды электронов и протонов не были бы скомпенсированы — газ оказался бы заряженным. Наблюдения же никакого заряда не обнаружили (с точностью до $10^{-20}$ !).

Или, например, нагрев куска вещества. Поскольку масса электрона значительно меньше массы ядер, скорость электронов при нагреве должна увеличиваться больше, чем у ядер. И если бы заряд зависел от скорости, то при нагреве вещество становилось бы заряженным. Ничего подобного никогда не наблюдалось.

Далее, если бы заряд электрона зависел от скорости, то в ходе химических реакций суммарный заряд вещества изменялся бы, поскольку средние скорости электронов в веществе зависят от его химического состава. Расчет показывает, что даже небольшая зависимость заряда от скорости приводила бы даже в простейших химических реакциях к огромным электрическим полям. Но и здесь ничего похожего не наблюдалось.

И наконец, расчет и работа всех современных ускорителей заряженных частиц основаны на предположении, что заряд частиц не меняется при изменении их скорости.

Итак, мы приходим к выводу, что заряд любой частицы — релятивистски инвариантная величина, не зависящая от скорости частицы, от выбора системы отсчета.

Инвариантность теоремы Гаусса для поля Е.
Оказывается — это следует как обобщение экспериментальных фактов,- что теорема Гаусса $\oint \mathbf{E} \mathrm{d} \mathbf{S}=q / \varepsilon_{0}$ справедлива не только для покоящихся зарядов, но и для движущихся. При этом поверхностный интеграл должен быть вычислен

для одного и того же момента времени в данной системе отсчета.

Кроме того, поскольку различные инерциальные системы отсчета физически эквивалентны друг другу (согласно принципу относительности), мы можем утверждать, что теорема Гаусса справедлива во всех инерциальных системах отсчета.

1
Оглавление
email@scask.ru