Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
При переходе от одной системы отсчета к другой поля E и B определенным образом преобразуются. Законы этого преобразования устанавливаются в специальной теории относительности, причем довольно сложным образом. По этой причине мы не будем воспроизводить здесь соответствующие выводы, а сосредоточим внимание на содержании этих законов, на вытекающих из них следствиях, а также на том, как следует пользоваться этими законами при решении некоторых конкретных вопросов. Постановка вопроса. Ответ на этот вопрос, как уже было сказано, дает теория относительности, которая показывает, что законы преобразования полей выражаются следующими формулами: Здесь символами Эти же формулы, записанные в проекциях, имеют вид: где предполагается, что оси координат Из уравнений (8.1) и (8.2) видно, что каждый из векторов Подчеркнем, что свойства электромагнитного поля, выраженные в законах его преобразования, являются локальными: значения Необходимо обратить внимание еще на следующие особенности законов преобразования полей: 2. Векторы Е и В связаны друг с другом в разных системах отсчета в высшей степени симметричным образом. Это особенно полно обнаруживается в форме записи законов преобразования через проекции полей [см. (8.2)]. 3. Если надо получить формулы обратного преобразования (от Частный случай преобразования полей ( Отсюда следует, что Формулу же для преобразования магнитного поля можно получить только с помощью теории относительности в результате довольно громоздких выкладок. Рассмотрим простой пример на применение формул (8.4). Пример. Перейдем в систему отсчета, связанную с пластинкой. Согласно первой из формул (8.4) в этой системе отсчета будет наблюдаться постоянное однородное электрическое поле Оно будет направлено к нам. Под действием этого внешнего поля произойдет смещение зарядов так, что на обращенной к нам поверхности пластинки выступят положительные заряды, а на противоположной поверхности — отрицательные. Поверхностная плотность Заметим, что при решении этого вопроса можно было рассуждать и иначе — с точки зрения системы отсчета, где пластинка движется со скоростью v. В этой системе отсчета внутри пластинки будет электрическое поле. Оно возникает вследствие действия магнитной части силы Лоренца, вызывающей смещение всех электронов в пластинке за плоскость рис. 8.1. В результате передняя поверхность пластинки оказывается заряженной положительно, задняя — отрицательно, и внутри пластинки появляется электрическое поле, причем такое, что электрическая сила Релятивистская природа магнетизма. Если бы эта скорость была бесконечной (соответственно и скорость распространения взаимодействий), никакого магнетизма вообще не существовало бы. В самом деле, рассмотрим свободный электрический заряд. В системе отсчета Релятивистская природа магнетизма является универсальным физическим фактом, и его происхождение обусловлено отсутствием магнитных зарядов. В отличие от большинства релятивистских явлений магнетизм во многих случаях обнаруживается сравнительно легко, например магнитное поле проводника с током. Причина подобных благоприятных обстоятельств обусловлена тем, что магнитное поле может создаваться очень большим числом движущихся зарядов при условии почти полного исчезновения электрического поля из-за практически идеального баланса числа электронов и протонов в проводниках. В этих случаях магнитное взаимодействие оказывается преобладающим. Почти полная компенсация электрических зарядов и позволила физикам изучить релятивистские эффекты (т. е. магнетизм) и открыть правильные законы. По этой причине после создания теории относительности законы электромагнетизма в отличие от законов Ньютона не пришлось уточнять. Поле не движется, а изменяется. при изменении системы отсчета, следует проявлять определенную осторожность в обращении с полями Е и В. Скажем, уже вопрос о силе, действующей на заряд со стороны движущегося магнитного поля, не имеет сколько-нибудь точного содержания. Сила определяется значениями величин Е и В в точке нахождения заряда. Если в результате движения источников полей Е и В их значения в этой точке будут меняться, изменится и сила, в противном случае движение источников на значении силы не отразится. Таким образом, при решении вопроса о силе, действующей на заряд, необходимо знать Если же когда и говорят о «движущемся» поле, то это нужно понимать просто как краткий и удобный способ словесного описания изменяющегося поля в определенных условиях и ничего более. Насколько надо проявлять осторожность в обращении с полем при переходе из одной системы отсчета к другой, станет ясно хотя бы уже из такого простого примера. Пример. 1. Да, частица движется в магнитном поле. Но, заметим, в магнитном поле, а не относительно магнитного поля. Рис. 8.2 2. Чтобы найти силу, надо учесть, что в
|
1 |
Оглавление
|