Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше
Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике
§ 6.7. Интегрируемость непрерывных и монотонных функций
Т е о р е м а 1. Если
функция
непрерывна
на
, то
она интегрируема на
.
Д о к а з а т е л ь с т в о. Так
как функция
непрерывна
на
, то
она равномерно непрерывна на
и, следовательно,
такое, что как только
разбит на части с
, то все колебания
. Отсюда
.
В силу произвольности
заключаем, что
, и по теореме 1 §
6.6 функция
интегрируема.
Т е о р е м а 2. Монотонная на отрезке функция
интегрируема на этом отрезке.
Д о к а з а т е л ь с т в о.
Будем считать, что
, иначе функция постоянна и теорема
тривиальна.
Так как
, то наша функция ограничена
на
.
Введем разбиение
отрезка
. Так как в данном
случае
,
то
,
. Выберем теперь
; тогда
,
и по теореме существования
(теорема 1 § 6.6) заключаем, что
интегрируема. Теорема доказана.
З а м е ч а н и е 1. отметим,
что монотонная функция может иметь счетное множество точек разрыва. Например,
функция
,
монотонно возрастает на
, имеет счетное множество точек
разрыва. Следовательно, по теореме 2 она интегрируема.
З а м е ч а н и е 2. Если
интегрируема на
, то
также интегрируем.
В самом деле,
и
из
имеем
. (1)
Если
,
- колебания
, соответственно
, на
, то из (1) следует,
что
и
.
Так как
интегрируема, то
,
но тогда
,
и, следовательно,
интегрируем.