Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 11. Ориентация и стабилизация спутниковЕсли спутник не обладает системой ориентации, то после вывода на орбиту он совершает сложное вращательне движение типа «кувыркания» под действием аэродинамических, гравитационных, магнитных, радиационных сил. Характер вращения спутника может постепенно изменяться. Например, цилиндрический спутник, получивший в момент отделения от ракеты-носителя вращение вокруг продольной оси, стремится с теченим времени начать вращаться вокруг поперечной оси, наподобие пропеллера. Для замедления первоначального беспорядочного вращения спутника часто используется воздействие магнитного поля Земли [2.23]. В частности, если установить на борту спутника мощный постоянный магнит, закрепленный в подшипниках, создающих большое трение, то стремление магнита стабилизироваться в магнитном поле заставит вращающийся вокруг своей оси спутник быстро затормозиться (при этом сильно нагреваются подшипники). Такая система успешно использовалась в советском астрономическом спутнике «Космос-215». Управление угловым положением (ориентацией) спутников осуществляется с помощью реактивных сопел, о чем рассказывалось в § 5 гл. 3. В системах ориентации часто применяют инфракрасные датчики, улавливающие тепловое излучение земной поверхности и таким путем обнаруживающие линию горизонта, а следовательно, и определяющие местную вертикаль. Подобная система стабилизации используется, например, в американских метеорологических спутниках серии «Нимбус», телевизионные камеры которых должны все время смотреть на Землю. Наиболее простым способом стабилизации служит сообщение спутнику вращения вдоль оси симметрии. Благодаря гироскопическому эффекту ось спутника, несмотря на возмущения, будет стремиться сохранить неизменным свое направление относительно звезд. Но не относительно Земли! Именно таким способом были ориентированы американские метеорологические спутники «Тирос». В результате спутники не кувыркались, что позволило получить десятки тысяч фотографий облачности Земли, но на большей части орбиты камеры могли фотографировать только мировое пространство. В последнее время находит распространение пассивный метод ориентации спутника по вертикали, основанный на существовании градиента гравитации. Спутник вытянутой формы стремится повернуться вокруг своего центра масс таким образом, чтобы его продольная ось расположилась вертикально. Это происходит от того, что конец спутника, более удаленный от Земли, притягивается Землей слабее, чем менее удаленный. Если при выводе спутника на орбиту сообщить ему медленное вращение, при котором он будет совершать один оборот вокруг центра масс за время одного облета Земли, то спутник будет двигаться вокруг Земли, располагаясь по вертикали, подобно Луне, повернутой к Земле все время одной своей стороной (это объясняется тем, что Луна тоже несколько вытянута вдоль линии Земля — Луна). Если же вращение сообщено спутнику не точно, то он начнет совершать колебания относительно вертикали, которые придется гасить специальными приспособлениями. Многие спутники не имеют вытянутой формы, и их снабжают складной штангой длиной в несколько метров (или даже десятков метров) с массой на конце. Штанга разворачивается в космосе в направлении от центра Земли. Все устройство снабжается демпфером пружинного типа для гашения колебаний (рис. 51, а, б) [2.23-2.25]. Теоретически градиент гравитации обеспечивает продолговатому спутнику, движущемуся по круговой орбите, еще два положения равновесия кроме описанного радиального (его можно назвать: «спица в колесе» [2.24]). Это положения вдоль вектора скорости («стрела» [2.24]) и поперек вектора скорости — перпендикулярно двум предыдущим направлениям («поплавок» [2.24]). Но эти два положения неустойчивы по отношению к посторонним возмущениям: достаточно вспышки на Солнце — и спутник начнет отклоняться к положению «спицы в колесе». Какое важное это может иметь значение, мы увидим в § 1 гл. 7. Система гравитационной стабилизации отрабатывалась, а потом использовалась на многих спутниках. Таковы «Триад», «Траак», «GEOS-1, -2», «Эол», спутники серии ATS, «Эксплорер-38» (четыре гравитационных полых стержня длиной
Рис. 51. Спутники с пассивными системами стабилизации: а) навигационный спутник США «1963-22А», б) исследовательский спутник США «Траак»; в) советский метеорологический спутник, «Космос-149» («Космическая стрела»). К числу пассивных методов относится аэродинамическая стабилизация. Продольная ось спутника может быть ориентирована в направлении его полета, если расположить в хвостовой части спутника стабилизатор, обладающий большей «парусностью», чем сам спутник (по принципу оперенной стрелы). Системой аэродинамической стабилизации был снабжен советский метеорологический спутник «Космос-149» (1967 г., рис. 51, в). При этом стабилизация спутника по крену (устранение поворота вокруг продольной оси) достигалась дополнительно с помощью двух гироскопов. Иллюминатор телевизионной аппаратуры спутника был в результате все время направлен на Землю [2.25]. К этому типу относился и спутник «Космос-320» (1970 г.). Ориентация пилотируемых кораблей-спутников осуществляется посредством ручного управления или автоматически. Например, космонавт может развернуть корабль «Союз» произвольным образом по отношению к направлению своего полета. О направлении же этом он судит по показаниям ионного датчика вектора скорости. Нельзя не упомянуть в заключение о важном теоретическом положении: вращательное движение спутника тесно связано с его поступательным движением, или движение спутника относительно центра масс связано с движением самого центра масс [2.21, 2.24]. Эта связь, устанавливаемая анализом точных уравнений движения, делается заметной при больших размерах спутника. Пусть, например, длинный продолговатый спутник с большими одинаковыми массами на концах («гантель») движется по круговой орбите вокруг Земли в положении «спицы в колесе». Повернем его с помощью системы ориентации в положение «копья». Суммарная гравитационная сила, действующая на спутник, как вытекает из закона всемирного тяготения, теперь уменьшится, и спутник перейдет на эллиптическую орбиту. (Читатель убедится в сказанном, проделав вычисления, если, пренебрегая массой стержня «гантели», примет его длину, скажем, равной С помощью системы ориентации может быть изменена орбита и в случаях совсем иных природных сил. Например, сопротивление атмосферы может измениться при перемене положения спутника по отношению к встречному потоку, а сила давления солнечного света — при изменении ориентации аппарата с солнечным парусом; это отражается на орбите.
|
1 |
Оглавление
|