Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 4. Управление движением космического аппаратаЗадача управления ракетой-носителем на участке разгона [1.34] заключается в том, чтобы в определенной точке пространства на заданной высоте ракета набрала скорость определенной величины в заданном направлении. Изменение курса ракеты в плотных слоях атмосферы осуществлялось в свое время главным образом с помощью воздушных рулей, действующих подобно рулям самолета, и с помощью газовых рулей — пластинок, отклоняющих определенным образом реактивную струю и тем самым поворачивающих корпус ракеты. Поворот корпуса ракеты, однако, более удобно осуществляется поворотом самого двигателя, подвешенного на шарнирах, или (реже) сопла двигателя. Для этой же цели могут служить небольшие вспомогательные («верньерные») двигатели. Аналогичным путем осуществляется стабилизация ракеты на курсе, т. е. компенсируются случайные отклонения ее от курса. В некоторых случаях для этого используются воздушные стабилизаторы — своеобразное оперение ракеты. Иногда верхняя ступень ракеты вовсе не имеет органов управления и стабилизируется на курсе посредством вращения вокруг продольной оси (как артиллерийский снаряд и винтовочная пуля). Такими, например, неуправляемыми были верхние ступени американских ракет-носителей, использовавшихся для запусков спутников Земли и космических зондов в 1958-1959 гг. Мало, однако, иметь возможность управлять ракетой — нужно еще знать, как именно это делать. На помощь приходит космическая навигация. Космическая навигация — в широком смысле — управление движением космического летательного аппарата; в узком смысле — определение его орбиты и прогнозирование движения. Для определения кеплеровой орбиты достаточно определить 6 ее независимых параметров. Существует три основных метода космической навигации. Метод инерциальной навигации использует исключительно механические явления на борту космического аппарата и поэтому является совершенно автономным, независимым от наземных станций. Более того, система инерциальной навигации не нуждается вообще ни в каких сигналах, приходящих со стороны, и не использует ни излучения Солнца и звезд, ни магнитного поля Земли, ни наблюдения ее поверхности. С помощью акселерометров измеряются негравитационные ускорения в трех взаимно перпендикулярных направлениях. Таким образом и определяется вектор негравитационного, «кажущегося» ускорения. Бортовые счетно-решающие устройства — интеграторы непрерывно вычисляют по ускорению скорость, а по скорости — пройденный путь (интегрирование в случае постоянного ускорения сводится к использованию «школьных» формул равноускоренного движения). Нетрудно понять, что найденные таким образом скорость и путь будут не истинными, а «кажущимися», так как акселерометры не могут измерить гравитационное ускорение (см. § 3). Но сведения о поле земного тяготения заложены заранее в вычислительные устройства и соответствующие поправки учитываются. Полученные результаты автоматически сравниваются с заранее рассчитанной программой разгона ракеты, и для компенсации обнаруженных расхождений даются определенные команды органам управления. Двигатель отключается, как только в заданной точке пространства достигнута заданная скорость. В случае, когда вдали от Земли и планет бортовой двигатель космического аппарата включается на короткое время для простого маневра, измеряемая инерциальной системой кажущаяся скорость будет из-за отсутствия сопротивления точно совпадать с характеристической скоростью маневра. Силы тяготения из-за их малости не скажутся на движении в течение короткого промежутка времени, и можно считать кажущуюся скорость практически равной приобретенному истинному приращению скорости. Подобные маневры необходимы для исправления траектории в соответствии с измеренными параметрами движения. Главная трудность будет при этом в том, чтобы необходимая скорость была сообщена в нужном направлении. Как это осуществляется, мы увидим ниже. Инерциальная система управления применяется также в случае управляемого планирующего спуска в атмосфере (с подъемной силой), о котором подробнее будет говориться в § 4 гл. 5 и § 2 гл. 11. Акселерометры при этом измеряют негравитационные ускорения, происходящие от аэродинамических сил, или, что то же самое, измеряют коэффициенты перегрузки. Бортовое счетно-решающее устройство спускаемого аппарата сравнивает показания акселерометров с программными и автоматически выдает соответствующие указания органам управления. Последние поворачивают спускаемый аппарат таким образом, чтобы аэродинамическая сила приняла нужное направление, в результате чего выправляется траектория спуска На начальном участке разгона применяются (обычно в сочетании с инерциальной навигацией) и радиотехнические средства наземной службы траекторных измерений. Радионавигация — пример неавтономной навигации. Метод радионавигации позволяет определить направление на космический аппарат (по указанию радиолокатора), расстояние до него (по времени прохождения туда и обратно сигнала, посланного радиолокатором и возвращенного обратно прибором-ответчиком) и, в соответствии с эффектом Доплера, лучевую скорость — проекцию скорости на направление радиолуча. Метод астрономической навигации используется главным образом в дальних космических полетах. Он основан на наблюдении светил на небесной сфере и во многом аналогичен используемому штурманами морских кораблей и самолетов. С помощью оптических приборов измеряются угловые расстояния между планетой и какой-либо из ярких неподвижных звезд (сфера неподвижных звезд в любой точке солнечной системы не отличается от видимой на Земле), между планетой и Солнцем, между Солнцем и звездой. Вблизи планеты измеряется угловое расстояние между звездой и краем видимого диска планеты или каким-либо ориентиром на ней; регистрируется момент затмения планетой звезды или захода Солнца; измерение углового диаметра планеты позволяет определить расстояние до нее. Метод астронавигации вполне автономен. На практике перечисленные методы зачастую применяются одновременно, взаимно дополняя результаты
|
1 |
Оглавление
|