Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 2. Движение внутри сферы действия ЗемлиРассмотрим подробнее движение на первом из перечисленных выше участков — от момента старта до пересечения границы сферы действия Земли. Это движение может рассматриваться с разных точек зрения, в двух различных системах отсчета. На рис. 116, а схематично показана геоцентрическая траектория космического аппарата от момента старта до выхода из сферы действия Земли, т. е. траектория в системе координат с началом в центре Земли и осями, перемещающимися поступательно вместе с Землей (оси постоянно направлены на одни и те же «неподвижные» звезды). Одновременно в системе координат с началом в центре Солнца и осями, направленными на «неподвижные» звезды, аппарат описывает гелиоцентрическую траекторию, показанную на рис. 116, б. За несколько дней, в течение которых космический аппарат покрывает расстояние до границы сферы действия Земли, сама Земля проходит в движении вокруг Солнца многие миллионы километров (за одни сутки Земля покрывает 2,6 млн. км), перейдя из точки 30 своей орбиты в точку В случае, изображенном на верхнем рис. 116, космический аппарат обгоняет Землю, вследствие чего выходит из сферы действия Земли в ее передней, фронтальной части. На нижнем рис. 116 изображен случай, когда начальная геоцентрическая скорость сообщается в примерно противоположном направлении. Теперь космический аппарат в своем гелиоцентрическом движении отстает от Земли и выходит из сферы действия Земли в ее тыльной части. В дальнейшем мы будем планетоцентрические (в частности, геоцентрические) скорости обозначать маленькой буквой и, а гелиоцентрические — большой буквой
Рис. 116 Движение внутри сферы действия Земли Геоцентрическая траектория полета внутри сферы действия Земли, конечно, испытывает возмущения со стороны Солнца, но мы будем ими пренебрегать, учитывая, что возможная при этом ошибка отступает на второй план по сравнению с отклонениями вследствие неизбежных ошибок при запуске, которые на последующем гелиоцентрическом движении вне сферы действия Земли скажутся гораздо существеннее [4.4]. Мы пренебрегаем при этом не солнечным притяжением, а его неоднородностью, т. е. наличием градиента солнечной гравитации. Мы считаем солнечное притяжение одинаковым во всем объеме сферы действия и неявно учитываем его. В самом деле, оно является причиной кривизны орбиты Земли (если бы не было Солнца, Земля двигалась бы по прямой линии), а эту кривизну мы принимаем во внимание, когда чертим вектор скорости Земли в точке (он отличается от вектора скорости Земли в точке 30). По мере удаления от Земли геоцентрическая скорость космического аппарата непрерывно падает. Ее величина
Здесь
Иными словами, считают геоцентрическую скорость выхода Погрешность, которую мы допускаем, пользуясь приближенной формулой (2), в значительной мере компенсируется другой погрешностью, а именно тем, что, пользуясь приближенным методом расчета траекторий, мы не учитываем возмущений со стороны Земли, сказывающихся на гелиоцентрическом движении космического аппарата вне сферы действия Земли. В самом деле, допуская первую погрешность, мы занижаем скорость космического аппарата на границе сферы действия Земли и вносим определенное искажение в гелиоцентрическую скорость. Но это последнее искажение даже отчасти полезно, поскольку как бы соответствует той ошибке, которую мы допускаем, забывая о притяжении Земли сразу же после пересечения космическим аппаратом границы ее сферы действия. Если, например, выход из сферы действия Земли осуществляется в сторону движения Земли, то первая ошибка занижает гелиоцентрическую скорость, но ведь то же самое делало бы и земное возмущение вне сферы действия Земли. Впрочем, разница между значениями Пользуясь приближенной формулой (2), в которой границы сферы действия Земли гиперболической. При движении внутри этой сферы по параболе и по эллипсу скорости Не имеет существенного значения, в какой именно точке пересекается аппаратом граница сферы действия Земли. Межпланетные расстояния так велики, что по сравнению с ними мы можем пренебречь разницей между расстояниями от Солнца всех возможных точек пересечения и принять, что начальная точка гелиоцентрической траектории (совпадающая с ючкой пересечения) находится на таком же расстоянии от Солнца, как и Земля. Важно точно соблюсти величину и направление выходной скорости
Рис. 117. Возможные траектории выхода к границе сферы действия Земли (утолщеииые лииии — активные участки траекторий). Существует бесчисленное количество гиперболических траектории одна прямолинейная (вертикальная), двигаясь по которым космический аппарат пересечет границу сферы действия в заданном направлении с заданной скоростью относительно Земли Между тем использование пологой траектории, как правило, оказывается невозможным вследствие невыгодного географического положения космодрома. Например, при старте из точки А приходится пользоваться крутой траекторией 1. В этом случае выгодно вывести космический аппарат предварительно на орбиту спутника Земли. Когда аппарат достигнет заранее намеченной точки В, дополнительный импульс выведет его на траекторию 2 — гиперболу с вершиной (перигеем) вблизи точки В. Таким образом, крутой разгон заменяется двумя пологими разгонами в точках Очевидно, спутник можно вывести на ту же промежуточную орбиту и в противоположном направлении. Тогда полет до границы сферы действия Земли будет происходить по траектории 3 (рис. 117), на которую космический аппарат будет выведен в точке Наконец, при старте из точек, не лежащих в плоскости чертежа, можно использовать круговые промежуточные орбиты, также не лежащие в этой плоскости. Плоскость каждой из этих орбит должна проходить через вертикаль 4. Тогда мы получим бесчисленное количество гиперболических траекторий, по которым космический аппарат после старта с борта спутника можно вывести к границе сферы действия Земли с одинаковыми векторами скорости. Все эти траектории лежат на поверхности вращения (рис. 118), ось которой совпадает с самой невыгодной траекторией 4, показанной на рис. 117.
Рис. 118. Поверхность, образованная траекториями выхода к границе сферы действия Земли. Вблизи границы сферы действия Земли, где гиперболы все более распрямляются, эта поверхность является почти цилиндрической [4.51. На границе сферы действия поверхность гиперболических траекторий вырезает окружность, в любой точке которой космический аппарат может покинуть сферу действия Земли с одной и той же по величине и направлению скоростью выхода. Дальнейшее движение (вне сферы действия Земли) будет происходить по одинаковым траекториям. На другом конце поверхности находится окружность (назовем ее окружностью орбитальных стартов [4.5]), в любой точке которой космический аппарат может стартовать с борта спутника и направиться к границе сферы действия Земли. Плоскость этой окружности перпендикулярна к плоскости чертежа на рис. 117; окружность проходит через точки раствора конуса с вершиной в центре Земли, опирающегося на окружность орбитальных стартов (угол 2 а на рис. 117). Для половины угла раствора можно вывести формулу
где До сих пор мы в наших рассуждениях полностью игнорировали суточное вращение Земли. Между тем благодаря ему космодром, старт с которого в какой-то момент времени не может обеспечить пологую траекторию разгона, в другой момент суток может оказаться в точке, положение которой позволит подобный разгон. Еслибы, например, космодром оказался в точке К или в точке Если все участки выведения считать одинаковой длины, то нетрудно сообразить, что точки земной поверхности, из которых можно вывести космический аппарат на пологую траекторию непосредственно (без периода пассивного орбитального полета), располагаются на некоторой окружности, проходящей через точки Изображенная на рис. 118 геометрическая картина (совокупность поверхности гиперболических траекторий, окружности орбитальных стартов, окружности наземных стартов) ориентирована каким-то образом в мировом пространстве, а именно так, что ось поверхности гиперболических траекторий параллельна направлению вектора скорости выхода из сферы действия Земли. Эта ориентация зависит от взаимного расположения Солнца, Земли и планеты назначения и потому в течение нескольких суток почти не изменяется. Между тем Земля успевает за сутки сделать один оборот вокруг своей оси и определенные точки ее поверхности за это время дважды пересекают окружность наземных стартов. В каждый из этих моментов можно осуществить вывод космического аппарата на необходимую траекторию без использования промежуточной орбиты. Но поскольку окружность наземных стартов меньше проекции окружности орбитальных стартов, а последняя заведомо меньше большого круга земной сферы, то существуют обширные районы, ни одна точка которых в течение суток даже не коснется окружности наземных стартов, а некоторые точки не подойдут и близко к ней. При старте с космодромов, расположенных в этих районах, необходимо использовать промежуточную орбиту, чтобы избежать больших гравитационных потерь. Для конкретного космодрома в каждый момент суток будет пригодна определенная промежуточная орбита. На рис. 119, а для некоторого расположения окружности наземных стартов затушевана зона земной поверхности, в которой возможны пологие разгоны без выхода на промежуточную орбиту.
Рис. 119. Случаи различного географического расположения окружности иаземиых стартов. Из затушеваннойзоны возможен в течение суток пологий разгон без выхода на промежуточную орбиту. Рис. 119, б соответствует частному случаю, не имеющему, вообще говоря, большого практического интереса, когда окружность наземных стартов охватывает один из географических полюсов. На рис. 119, в изображен еще более частный случай, когда окружность наземных стартов совпадает с географической параллелью. При этом пологий разгон без выхода на промежуточную орбиту возможен только для точек данной параллели. Мы здесь не входим в обсуждение вопроса о том, для каких целей исследования мирового пространства может понадобиться, чтобы геоцентрическая скорость выхода из сферы действия Земли была направлена к южному полюсу небесной сферы, как это изображено на рис. 119, е. (На рис. 119, а, б, в пунктирная линия, проходящая через центр окружности наземных стартов и центр Земли, является осью поверхности, изображенной на рис. 118, и указывает направление выхода из сферы действия Земли.) Впервые старт с промежуточной орбиты был осуществлен февраля 1961 г. при запуске советской автоматической станции Венера-1.
|
1 |
Оглавление
|