Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 2. Пространственная задача достижения ЛуныРассмотрим условия полета к Луне с космодрома, расположенного вне благоприятной экваториальной зоны, о которой говорилось выше. Пусть это будет космодром в северном полушарии, примером которого может служить советский космодром Байконур (47° с. ш.). Теперь можно указать ряд траекторий, осуществить которые невозможно. Очевидно, например, что невозможен полет по полуэллиптической траектории, так как угловая дальность 180° не существует для точек старта, не лежащих в плоскости орбиты Луны (Луна никогда не бывает в надире, «под ногами»). То же касается и вертикальной траектории с нулевой угловой дальностью (Луна не бывает в зените). Невозможны и траектории, близкие к указанным. На рис. 70 показана типичная плоскость перелета к Луне из северного полушария. Космодром в течение суток перемещается по своей параллели, что позволяет выбрать наиболее выгодную угловую дальность перелета
Рис. 70. Типичная плоскость перелета к Луне из северного полушария: а — угол возвышения начальной скорости: Максимальной угловой дальности полета соответствует случай, когда «упрежденная» Луна находится в самой южной точке своей орбиты, а плоскость полета проходит через земную ось, т. е. наклонена к плоскости земного экватора на 90°. Если не учитывать вращения Земли и некоторых иных обстоятельств, то такая плоскость была бы наилучшей. Однако полет в этой плоскости заставил бы отказаться от «дарового» прибавка скорости вследствие суточного вращения Земли (см. § 1 гл. 3). Воспользоваться им можно только при разгоне в восточном направлении, а это вынуждает к некоторому компромиссу — отказу от максимальной угловой дальности. Кроме тоге, желательно выбрать направление разгона так, чтобы траектория не проходила над населенными пунктами, чтобы ей соответствовала сеть наблюдательных станций, и т. д. [3.3]. Первые советские космические ракеты направлялись к Луне в плоскостях, образующих угол 65° с плоскостью экватора [3.4]. Рассмотрим для наглядности условия полета к Луне в плоскости, проходящей через ось Земли В течение суток космодром перемещается по параллели, занимая различные положения в пространстве. В течение сидерического месяца (27,3 сут) Луна совершает полный оборот по своей орбите. Очевидно, что угловая дальность принимает максимальное значение, когда цель находится в точке
Рис. 71. Полет к Луне: д) в благоприятный период; б) в неблагоприятный период; б) с использованием промежуточной орбиты спутника Земли. Поэтому период, когда Луна приближается к точке наиболее благоприятная цель. Указанная угловая дальность равна В наиболее благоприятную эпоху (например, 1969 г.), когда угол Выше указывалось, что параболическая траектория с горизонтальной начальной скоростью имеет угловую дальность 165°. Значит, наша траектория 1 (рис. 71, а) мало отличается от нее. Старт должен быть произведен именно в то время суток, когда космодром окажется в точке А. В точке же В, например, угловая дальность будет равна В наименее благоприятную эпоху (например, 1959 г.), когда угол Положение Луны вблизи точки Любопытно, что неблагоприятный период, когда Луна находится вблизи точки Итак, в течение месяца существует небольшой период (примерно в одну неделю), когда полет к Луне связан с минимальными гравитационными потерями при запуске. Это тот период, когда Луна приближается к самой южной точке своей орбиты. В остальное время приходится жертвовать какой-то частью полезной нагрузки [3.4]. Однако существует способ обойти неудобства географического расположения стартовой площадки и не только без существенных потерь в полезной нагрузке осуществлять в любой день месяца запуск к Луне, но и использовать при этом любую траекторию перелета — с любой угловой дальностью, даже равной 180°. Такая возможность существует даже при самом неблагоприятном взаимном расположении космодрома на своей параллели (точка А) и Луны на своей орбите (точка Произведя запуск из точки А на ту же круговую орбиту в противоположном направлении (по часовой стрелке) и осуществляя сход с орбиты в точках Разумеется, полеты по траекториям 3, 4, 3, 4 можно осуществить и совершая старт в момент, когда космодром находится в точке В своей параллели. Наконец, есть полный смысл воспользоваться промежуточной орбитой и в тот период, когда Луна приближается к точке Описанный маневр называют по-разному: старт с орбиты, использование траектории разгона с пассивным участком, старт с помощью орбитального разгонного блока. Смысл маневра заключается в том, что один крутой разгон заменяется двумя пологими (практически горизонтальными): при выходе на промежуточную орбиту (если исключить обязательный момент вертикального отрыва от стартовой площадки) и при сходе с орбиты. Таким образом, сводятся к минимуму гравитационные потери. Старт с орбиты позволяет преодолеть также специальное ограничение на продолжительность полета, связанное с условиями связи с автоматической станцией в момент ее сближения с Луной. Если полет к Луне происходит в благоприятный период (рис. 71, а), то старт, как мы знаем, должен производиться в момент, когда космодром находится в точке А. Между тем наилучшие условия для связи со станцией, когда она приближается к точке Полеты к Луне советских автоматических станций «Луна-1», «Луна-2» и «Луна-3» в 1959 г. происходили без использования маневра старта с орбиты. Первые два из них продолжались Все последующие советские запуски в сторону Луны и большинство последующих американских сопровождались стартом с орбиты. Преимущества старта с орбиты перед непрерывным участком разгона слишком очевидны, чтобы не воспользоваться первым, несмотря на некоторые недостатки этого метода, требующие преодоления различных технических затруднений. Желательно, чтобы ючка схода с орбиты была в пределах радиовидимости наземных станций, а это не всегда возможно, так как пассивный участок полета по круговой орбите может быть довольно велик [3.3]. Вообще, чем длиннее этот участок, тем существеннее могут оказаться навигационные ошибки; поэтому траектории 3 и 4 на рис. 71, в выгоднее, чем траектории 3 и 4, и если они избраны, то старт лучше производить в момент, когда космодром находится в точке В, а не в точке А. Какой должна быть высота промежуточной орбиты? Это небезразлично с точки зрения энергетики полета. Чем больше высота, тем, вообще говоря, меньше импульс скорости при сходе с орбиты, но зато и тем больше затраты энергии на вывод на орбиту, причем последнее обстоятельство существеннее. Поэтому выбираются всегда низкие промежуточные орбиты.
|
1 |
Оглавление
|