Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 2. Пространственная задача достижения ЛуныРассмотрим условия полета к Луне с космодрома, расположенного вне благоприятной экваториальной зоны, о которой говорилось выше. Пусть это будет космодром в северном полушарии, примером которого может служить советский космодром Байконур (47° с. ш.). Теперь можно указать ряд траекторий, осуществить которые невозможно. Очевидно, например, что невозможен полет по полуэллиптической траектории, так как угловая дальность 180° не существует для точек старта, не лежащих в плоскости орбиты Луны (Луна никогда не бывает в надире, «под ногами»). То же касается и вертикальной траектории с нулевой угловой дальностью (Луна не бывает в зените). Невозможны и траектории, близкие к указанным. На рис. 70 показана типичная плоскость перелета к Луне из северного полушария. Космодром в течение суток перемещается по своей параллели, что позволяет выбрать наиболее выгодную угловую дальность перелета
Рис. 70. Типичная плоскость перелета к Луне из северного полушария: а — угол возвышения начальной скорости: Максимальной угловой дальности полета соответствует случай, когда «упрежденная» Луна находится в самой южной точке своей орбиты, а плоскость полета проходит через земную ось, т. е. наклонена к плоскости земного экватора на 90°. Если не учитывать вращения Земли и некоторых иных обстоятельств, то такая плоскость была бы наилучшей. Однако полет в этой плоскости заставил бы отказаться от «дарового» прибавка скорости вследствие суточного вращения Земли (см. § 1 гл. 3). Воспользоваться им можно только при разгоне в восточном направлении, а это вынуждает к некоторому компромиссу — отказу от максимальной угловой дальности. Кроме тоге, желательно выбрать направление разгона так, чтобы траектория не проходила над населенными пунктами, чтобы ей соответствовала сеть наблюдательных станций, и т. д. [3.3]. Первые советские космические ракеты направлялись к Луне в плоскостях, образующих угол 65° с плоскостью экватора [3.4]. Рассмотрим для наглядности условия полета к Луне в плоскости, проходящей через ось Земли В течение суток космодром перемещается по параллели, занимая различные положения в пространстве. В течение сидерического месяца (27,3 сут) Луна совершает полный оборот по своей орбите. Очевидно, что угловая дальность принимает максимальное значение, когда цель находится в точке
Рис. 71. Полет к Луне: д) в благоприятный период; б) в неблагоприятный период; б) с использованием промежуточной орбиты спутника Земли. Поэтому период, когда Луна приближается к точке наиболее благоприятная цель. Указанная угловая дальность равна В наиболее благоприятную эпоху (например, 1969 г.), когда угол Выше указывалось, что параболическая траектория с горизонтальной начальной скоростью имеет угловую дальность 165°. Значит, наша траектория 1 (рис. 71, а) мало отличается от нее. Старт должен быть произведен именно в то время суток, когда космодром окажется в точке А. В точке же В, например, угловая дальность будет равна В наименее благоприятную эпоху (например, 1959 г.), когда угол Положение Луны вблизи точки Любопытно, что неблагоприятный период, когда Луна находится вблизи точки Итак, в течение месяца существует небольшой период (примерно в одну неделю), когда полет к Луне связан с минимальными гравитационными потерями при запуске. Это тот период, когда Луна приближается к самой южной точке своей орбиты. В остальное время приходится жертвовать какой-то частью полезной нагрузки [3.4]. Однако существует способ обойти неудобства географического расположения стартовой площадки и не только без существенных потерь в полезной нагрузке осуществлять в любой день месяца запуск к Луне, но и использовать при этом любую траекторию перелета — с любой угловой дальностью, даже равной 180°. Такая возможность существует даже при самом неблагоприятном взаимном расположении космодрома на своей параллели (точка А) и Луны на своей орбите (точка Произведя запуск из точки А на ту же круговую орбиту в противоположном направлении (по часовой стрелке) и осуществляя сход с орбиты в точках Разумеется, полеты по траекториям 3, 4, 3, 4 можно осуществить и совершая старт в момент, когда космодром находится в точке В своей параллели. Наконец, есть полный смысл воспользоваться промежуточной орбитой и в тот период, когда Луна приближается к точке Описанный маневр называют по-разному: старт с орбиты, использование траектории разгона с пассивным участком, старт с помощью орбитального разгонного блока. Смысл маневра заключается в том, что один крутой разгон заменяется двумя пологими (практически горизонтальными): при выходе на промежуточную орбиту (если исключить обязательный момент вертикального отрыва от стартовой площадки) и при сходе с орбиты. Таким образом, сводятся к минимуму гравитационные потери. Старт с орбиты позволяет преодолеть также специальное ограничение на продолжительность полета, связанное с условиями связи с автоматической станцией в момент ее сближения с Луной. Если полет к Луне происходит в благоприятный период (рис. 71, а), то старт, как мы знаем, должен производиться в момент, когда космодром находится в точке А. Между тем наилучшие условия для связи со станцией, когда она приближается к точке Полеты к Луне советских автоматических станций «Луна-1», «Луна-2» и «Луна-3» в 1959 г. происходили без использования маневра старта с орбиты. Первые два из них продолжались Все последующие советские запуски в сторону Луны и большинство последующих американских сопровождались стартом с орбиты. Преимущества старта с орбиты перед непрерывным участком разгона слишком очевидны, чтобы не воспользоваться первым, несмотря на некоторые недостатки этого метода, требующие преодоления различных технических затруднений. Желательно, чтобы ючка схода с орбиты была в пределах радиовидимости наземных станций, а это не всегда возможно, так как пассивный участок полета по круговой орбите может быть довольно велик [3.3]. Вообще, чем длиннее этот участок, тем существеннее могут оказаться навигационные ошибки; поэтому траектории 3 и 4 на рис. 71, в выгоднее, чем траектории 3 и 4, и если они избраны, то старт лучше производить в момент, когда космодром находится в точке В, а не в точке А. Какой должна быть высота промежуточной орбиты? Это небезразлично с точки зрения энергетики полета. Чем больше высота, тем, вообще говоря, меньше импульс скорости при сходе с орбиты, но зато и тем больше затраты энергии на вывод на орбиту, причем последнее обстоятельство существеннее. Поэтому выбираются всегда низкие промежуточные орбиты.
|
1 |
Оглавление
|