Главная > Механика космического полета в элементарном изложении
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 3. Солнечный парус

Проблема выхода космического аппарата с солнечным парусом из сферы действия Земли была рассмотрена в § 10 гл. 5. Управление парусом вне сферы действия Земли более просто. Если заставить парус поворачиваться так, чтобы солнечные лучи все время были перпендикулярны к его поверхности, то космический аппарат окажется «погруженным в ослабленное поле тяготения» и начнет двигаться вокруг Солнца по эллиптической, параболической или гиперболической орбите.

Рис. 131. Схема полета с солнечным парусом: а) к внешним планетам; 6) к внутренним планетам. Стрелки — векторы сил тяги.

Как показывают расчеты, аппарат массой 0,5 т смог бы при парусе диаметром сделанном из пленок с поверхностной плотностью достичь Марса по полуэллиптической траектории за 286 сут. Такой парус сообщал бы на орбите Земли ускорение что составляет примерно ускорения солнечного притяжения. При диаметре паруса корабль массой смог бы покинуть Солнечную систему [4.5].

Но выгоднее всего повернуть парус так, чтобы солнечный свет «дул почти в корму» корабля в его движении вокруг Солнца. При этом солнечные лучи будут косо падать на парус (от этого уменьшится давление), но зато сила тяги паруса будет направлена почти в сторону движения. Корабль по спирали начнет удаляться от Солнца (рис. 131, с).

На первый взгляд может показаться, что солнечный парус не позволяет приблизиться к Солнцу, но это не так. Расположив парус таким образом, чтобы давление солнечного света тормозило

движение корабля, мы заставим его двигаться по спирали внутрь нашей планетной системы, т. е. к орбитам Венеры и Меркурия (рис. 131, б).

Достигнув района планеты назначения, аппарат с солнечным парусом может пролететь мимо планеты, но может также в течение нескольких недель совершить сложное маневрирование парусом, учитывающее вблизи планеты существование затененной области пространства, чтобы снизиться к планете и выйти на орбиту ее искусственного спутника.

Если управление парусом осуществляется таким образом, что солнечные лучи падают на него под неизменным углом (это управление просто по идее, но не является оптимальным), то движение космического аппарата вне сферы действия Земли происходит по так называемой логарифмической спирали. Такой программе управления примерно соответствуют траектории, изображенные на рис. 131 (логарифмическая спираль пересекает все круговые орбиты под одинаковыми углами). Подобные перелеты должны быть выгодны с точки зрения их продолжительностей. Описанный выше парус диаметром при должной неизменной ориентации относительно солнечных лучей доставил бы полезный груз в к Марсу за 247 сут [4.5, 4.291.

По другим расчетам, тот же корабль, но с парусом диаметром сможет достичь Марса за 118 сут (не считая нескольких недель для выхода из сферы действия Земли) [4.5, 4.30]. Заметим, что импульсный гомановский перелет требует 259 сут (см. табл. 6).

К сожалению, однако, дело обстоит сложнее, чем может показаться. Логарифмическая спираль пересекает орбиту Земли (как и другие орбиты) под некоторым углом. Например, для указанного выше случая -суточного перелета этот угол должен составлять 8,5°. Для соответствующего направления гелиоцентрической скорости выхода из сферы действия Земли геоцентрическая скорость выхода должна, как показывает несложный расчет, равняться 4,4 км/с [4.29]. Но может ли аппарат с солнечным парусом, стартовавший с околоземной орбиты, выйти к границе сферы действия Земли с такой скоростью? Это сомнительно. Скорее всего эту скорость придется добавлять с помощью химического двигателя. Но тогда уж проще добавить эту скорость в нужном направлении и достичь Марса за гораздо более короткое время. По аналогичной причине понадобится дополнительный тормозной импульс при достижении планеты назначения, чтобы стал возможным выход на орбиту ее искусственного спутника.

Однако доказано, что перелет с орбиты Земли на орбиту другой планеты с помощью солнечного паруса возможен (при определенной программе изменения наклона паруса) по траектории, не пересекающей, а лишь касающейся орбит Земли и планеты назначения, причем начальная и конечная гелиоцентрические скорости равны орбитальным скоростям Земли и планеты. Но, к сожалению,

продолжительность перелета теперь будет гораздо больше. Например, при описанном выше парусе диаметром создающем при нагрузке если солнечные лучи падают на него отвесно, на расстоянии 1 а. от Солнца ускорение перелет с орбиты Земли до орбиты Марса продолжался бы 405 сут. Даже если бы ускорение увеличилось вдвое (для чего при той же нагрузке диаметр паруса должен был бы равняться примерно 500 м), полет до Марса продолжался бы 322 сут, до Венеры — 164 сут, до Меркурия — 0,53 года, до Юпитера — 6,6 года, до Сатурна — 17 лет, до Урана — 49 лет, до Нептуна — 96 лет, до Плутона — 145 лет [4.31].

Последние приведенные данные о продолжительности перелетов с солнечным парусом с околоземной орбиты на околопланетную малоутешительны! Однако следует иметь в виду, что перелеты, не ставящие целью снижение на орбиту искусственного спутника исследуемой планеты, а ограничивающиеся лишь пролетом мимо планеты, будут мало отличаться от перелетов по логарифмической спирали. Наконец, увеличение площади парусов позволит сократить время перелета, хотя управление огромными тонкими пленками представляет тяжелую техническую задачу.

1
Оглавление
email@scask.ru