Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше
Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике
2. Геометрический смысл частных производных функции двух переменных
Выясним геометрический смысл частной производной функции двух переменных Как известно, графиком функции является некоторая поверхность. Рассмотрим точку в плоскости и соответствующую точку на поверхности (рис. 219). Сделаем параллельный перенос осей с новым началом в точке и рассмотрим плоскую кривую которая получится при сечении поверхности новой координатной плоскостью (т. е. плоскостью в старой системе координат). Эту кривую можно рассматривать как гграфик функции одной переменной в плоскости (т. е. в плоскости в старой системе). Но тогда, согласно геометрическому смыслу производной функции одной переменной, где - угол с осью или, что то же, с осью касательной, проведенной к кривой в точке другой стороны,
Отсюда следует, что . Итак, значение частной произеодной в точке равно тангенсу угла у составленного с осью касательной, проведенной в точке к линии пересечения поверхности и плоскости у В этом заключается геометрический смысл частной производной Аналогично выясняется геометрический смысл частной производной