Главная > Курс термодинамики (Микрюков В.Е.)
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

9. Химический потенциал компонента идеального газа

Химический потенциал компонента, выраженный через свободную энергию (уравнение 36,4), имеет следующий вид:

Зная свободную энергию смеси идеального газа, которая выражается уравнением (37,5), мы можем найти химический потенциал компонента:

и аналогично этому:

где

Мольно-объемная концентрация определяется как

Подставляя ее в (37,8), получим:

Возвратившись к уравнению (37,8), мы видим, что химический потенциал компонента есть функция или температуры и концентрации. Если система определяется термодинамическим потенциалом, то он будет иметь вид:

Найдем химический потенциал компонента, взяв за основу уравнение (38), используя уравнения (37,7) и Клапейрона — Менделеева.

Уравнение Клапейрона — Менделеева для смеси газов имеет вид:

где общее давление смеси газов, V — общий объем смеси газов, — общая масса газовой смеси.

Из уравнения (38,1) определим объем:

Подставив его из уравнения (38,2) в (37,8), получим:

Определим, далее, мольно-долевую концентрацию как

и, подставив ее значение из (38,4) в (38,3), найдем:

где

Из уравнения (38,5) следует, что химический потенциал компонента есть функция и мольно-долевой концентрации, т.е.

Categories

1
Оглавление
email@scask.ru